
AD-A258 435

Unit Analysis and Testing

SEI Curriculum Module SEI-CM-9-2.0

June 1992

DTIC
S ELECTE

DEC 2 21 992 U

Larry J. Morell
Hampton University

Lionel E. Deimel
Software Engineering Institute

- Carnegie Mellon University

Software Engineering Institute

92-32425

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

~ *j ~071

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval ..

This report has been reviewed and is approved for publication.

FOR THE COMMANDER r

rNqUS CFRA&ISDTI3 TkM3U

John S. Herman, Capt, USAF
SEI Joint Program Office I,,.

Di.-t: ib;xton-

viit
Oi't • .•'-.d.;•

II

The Software Engineering Institute Is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.

Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Ann: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce. Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue. Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Unit Analysis and Testing

Acknowledgements Contents

We would like to thank the Software Engineering Institute Capsule Description 1
for its sponsorship of the writing of this curriculum mod- A Word About This Version 1
ule and its support of two major revisions. Norm Gibbs,
Gary Ford, and Albert Johnson helped make writing ver- Philosophy I
sion 1.0 both enjoyable and satisfying. Student assistants Objectives 2
Suzanne Woolf and Dana Hausman, who helped construct Prerequisite Knowledge 3
the bibliography, made it less wearisome. Module Content 4

We want to thank the many people who invested their Outline 4
time in reviewing earlier drafts of this module: Mark
Borger, Peter Feiler, Robert Goldberg, John Goodenough, Annotated Outline 4
Marc Graham, John Nestor, K. C. Tai, Christian Wild, and Glossary 18
Steven Zeil. Their many comments and suggestions have Figure: Software Verification Model 20
been invaluable.

Linda Pesante, of the SEI, deserves special recognition for Teaching Considerations 21

her editing of this material at various times over the past Textbooks 21
years, as well as for her cooperation and expertise, which Suggested Schedules 21
were essential to bringing the current version to press. Exercises 22
The clarity of our writing has been much improved
through her efforts. Suggested Reading Lists 22

Bibliography 24

SEI-CM-9-2.0 iii

Unit Analysis and Testing

Module Revision History

Version 2.0 (June 1992) Major revision; title changed to Unit Analysis and Testing from Unit Testing and Analysis
Version 1.2 (April 1989) Outline error and other minor errors corrected
Version 1.1 (December 1988) Minor changes and more thorough annotations in bibliography

Approved for publication
Version 1.0 (October 1987) Draft for public review

iv SEI-CM-9-2.0

Unit Analysis and Testing

Capsule Description ing (and other verification) techniques, analysis
techniques are discussed separately from the testing

This module examines the techniques, assessment, techniques they support.
and management of unit analysis and testing. Anal- We believe the current organization provides greater
ysis strategies are classified according to the view insight into the nature of the techniques described
they take of the software: textual, syntactic, control and their relationship to one another. We have also
flow, data flow, computation flow, or functional. been more deliberate about definitions and have in-
Testing strategies are categorized according to troduced them within the context of a model of veri-
whether their coverage goal is specification-oriented, fication.
implementation-oriented, error-oriented, or a combi-
nation of these. Mastery of the material in this mod- At every turn, we have had to resist turning the mod-
ule allows the software engineer to define, conduct, ule into a monograph. The goal, of course, was toand evaluate unit analyses and tests and to assess keep this work an approachable outline with bibliog-
new techniques proposed in the literature, raphy and teaching suggestions. Achieving this goalmeant deleting related material, paring the size of

the bibliography, not explaining certain concepts as
much as we would like, and not relating concepts to

A Word About This Version one another at greater length. The authors take full
responsibility for what may seem, in places, a loose-
ness of integration. We believe the casual reader

This version of Unit Analysis and Testing contains will appreciate our brevity, however, and the careful
many changes that will be noticed by readers of ear- reader will receive sufficient guidance to fill in any
lier versions, including the relatively minor title gaps.
change from Unit Testing and Analysis. Lionel
Deimel functioned as an active technical editor of The emphasis here is on testing, and the reader
previous editions, and his status has been upgraded should be warned that the treatment of analysis is
to that of coauthor. not comprehensive, but is meant to pro-, ide the nec-

essary background for the discussion of the main
The scope and goals of this curriculum module are topic. Perhaps in the future, unit analysis will
largely unchanged (see Philosophy below) but the receive the attention it deserves ,n its own curricu-
material has been updated and reorganized to reflect lum module.
our rapidly expanding understanding of analysis and
testing techniques. In particular, we have recog-
nized that each testing technique requires determi-
nation of software characteristics, the discovery of Philosophy
which we have named analysis.1 Since one testing Y
technique may rely on several analysis techniques,and one analysis technique may support several test: Program testing is the most practiced means of veri-fying that a program possesses the features required

by its specification. Testing is a dynamic approach
to verification in which software is executed with

Iln the earlier versions of this module "analysis" referred to test data to assess the presence of required features.
verification techniques that did not require execution of the The inferences involved in this assessment are
software. We feel the narrowed definition used here is more in surprisingly complex. Testing employs analysis to
keeping with the conventional usage of the word.

SEI-CM-9-2.0 1

Unit Analysis and Testing

determine software characteristics, which are then Objectives
used to evaluate whether features are present or not.

Many verification techniques have become estab- The following is a list of possible educational objec-
lished technologies with their own substantial litera- tives based upon the material in this module. Objec-
ture. So that they may be given adequate treatment tives for any particular unit of instruction may be
elsewhere, these techniques have been placed out- drawn from these or related objectives, as may be
side the scope of this module. Included among these appropriate to audience and circumstances.
techniques are proof of correctness, safety verifica- Knowledge
tion, and the more open-ended verification proce- Define the basic terminology of analysis and
dures represented by code inspections and reviews, testing (particularly those terms found in the

This module focuses on unit-level analysis and test- glossary on page 18 or italicized in the text).
ing techniques; integration and systems testing are State the theoretical and computational
outside our scope. What constitutes a "unit" has limitations of analysis and testing.
been left imprecise-it may be as little as a single
statement or as much as a set of coupled subroutines. 9 State the strengths and weaknesses of several
The essential characteristic of a unit is that it can analysis and testing techniques.
meaningfully be treated as a whole. e Identify six program views.

Because testing is a form of verification, it cannot be Comprehension
performed in the absence of requirements. Included 9 Explain the complementary nature of
in requirements are not only written specifications, specification-oriented, implementation-
standards, and the like, but also implicit or unwritten oriented, and error-oriented testing techniques.
understandings of what the software should do. * Describe how the choice of analysis and testing

Analysis techniques are classified here according the criteria affects the selection and evaluation of
kinds of software characteristics they discover. Soft- test data.
ware characteristics are described as reflecting dif- a Explain the role of error collection as a
ferent views of the software: textual, syntactic, con- feedback and control mechanism.
trol flow, data flow, computation flow, or functional.
By helping to discover software characteristics, anal- 9 Explain the program view taken by a given
ysis techniques play a part in many verification tech- testing technique.
niques, including testing. Application

Three major classes of testing are discussed- e Test a software unit using specification-
specification-oriented, implementation-oriented, and oriented, implementation-oriented and error-
error-oriented-as well as some hybrid approaches. oriented techniques.
Specification-oriented testing ensures that specified o Use configuration management to control the
major features of the software are covered. process ofunitanalysisandtesting.
Implementation-oriented testing ensures that major
characteristics of the code are covered. Error- Analysis
oriented testing ensures that the range of typical er- . Determine the unit analysis and testing
rors is covered. The benefits of using techniques techniques applicable to a project, based upon
from different classes are complementary, and no the verification goals, the nature of the product,
single technique is comprehensive, and the nature of the testing environment.

Assessment of unit analysis and testing techniques Synthesis
can be theoretical or empirical. This module pre- e Write a test plan tailored to accommodate
sents both of these forms of assessment, and dis- prot constrants.
cusses criteria for selecting methods and controlling project constraints.
the verification process. 9 Design software tools to support

implementation-oriented analysis and testing
Management of unit analysis and testing should be techniques.
systematic. It proceeds in two stages. First, tech-
niques appropriate to the project must be selected. Evaluation
Then these techniques must be systematically ap- o Evaluate the potential usefulness of new unit
plied, analysis or testing techniques proposed in the

literature.

2 SEI-CM-9-2.0

Unit Analysis and Testing

Prerequisite Knowledge

The student of unit analysis and testing should, of
course, have a solid background in programming.
Some mathematical sophistication is required, in-
cluding a working knowledge of logic, relations, and
functions. Beyond this, necessary background is
dictated by the topics to be covered. Some of the
specification-oriented techniques require that the
student be able to read algebraic, axiomatic, and
functional specifications of software modules. The
implementation-oriented component requires knowl-
edge of BNF grammars and graphs. If structural
analysis tools are to be built, the student needs to
have knowledge of parsing technology, parse trees,
and graph algorithms at the level of an introductory
compiler construction course. To understand the
fundamental limitations of testing, the student
should be familiar with the halting problem and re-
duction proofs. If underlying foundations of statis-
tical testing are to be explored in depth, then a full
year of statistics is a prerequisite. Effective use of
the statistical models requires one semester of statis-
tics.

SEI-CM-9-2.0 3

Unit Analysis and Testing

Module Content

Outline (iv) Perturbation testing
(v) Fault sensitivity testing

I. Preliminaries c. Propagation-oriented testing
1. Concepts and terminology (i) Path testing
2. Adequacy of testing (ii) Compiler-based testing
3. Limitations of testing (iii) Data flow testing

4. Organization of this module (iv) Mutation testing
II. Program Analysis Techniques 3. Error-oriented testing

1. From a textual view a. Error-based testing
2. From a syntactic view b. Fault-based testing

3. From a control flow view c. Probable correctness

4. From a data flow view 4. Hybrid Testing Techniques

5. From a computation flow view IV. Evaluating Unit Analysis and Testing

6. From a functional view Techniques

III. Program Testing Techniques 1. Theoretical evaluation

1. Specification-oriented testing 2. Empirical evaluation
a. Testing independent of the specification V. Managerial Aspects of Unit Analysis and Testing

technique 1. Selecting techniques
(i) Testing based on the interface 2. Goals

(1) Input domain testing 3. Nature of the product

(2) Equivalence partitioning a. Data processing

(3) Syntax checking b. Scientific computation
(ii) Testing based on the function to be c. Expert systems

computed d. Embedded and real-time systems
(1) Special value testing 4. Nature of the testing environment

(2) Output domain coverage a. Available resources

b. Testing dependent on the specification b. Personel
technique
(i) Algebraic c. Project constraints

(ii) Axiomatic 5. Control

(iii) State machines a. Configuration control

(iv) Decision tables b. Conducting tests

2. Implementation-oriented testing
a. Structure-oriented testing

(i) Statement testing Annotated Outline
(ii) Branch testing

(iii) Data coverage testing I. Preliminaries

b. Infection-oriented testing The analysis and testing techniques with which this

(i) Conditional testing curriculum module deals are numerous and diverse.
Unfortunately, there is neither a widely accepted

(ii) Expression testing taxonomy of them nor a standard model from which a

(iii) Domain testing taxonomy might be derived. Some of the classifica-

4 SEI-CM-9-2.0

Unit Analysis and Testing

tions seen in the literature (the often-made distinction Informally, testing is verification using information
between static analysis and dynamic analysis, for derived from execution of software. But by itself, a
example) seem to us insufficiently useful for making simple definition of testing fails adequately to con-
sense of this material. In this section, therefore, we vey either its complexity or its subtlety. Construct-
present a framework for understanding unit analysis ing a model to discuss testing can help us gain
and testing. This framework not only provides organi- greater insight. The figure on page 20 presents such
zation for what follows, but also, we hope, provides a model, in which rectangles represent objects or
some insight into the techniques of interest and into collections of objects, and directed arcs represent
why their application is complex. relations.

We begin by defining terms that will be used through- At the top left of the figure, we show "require-
out the module. Then we examine the complementary ments," the collection of statements, diagrams, un-
benefits of different testing techniques, followed by the derstandings, and other information that define and
inherent limitations of testing. We conclude the sec- constrain the software to be produced. 2 As used
tion with an overview of the remaining material. here, requirements include not only the immediate

precursor of a software unit-for example, a high-
1. Concepts and terminology level design-but also other assertions, written or

As is often true in an evolving field, terminology not, that serve to establish desired properties of the

used to describe program testing is far from settled. software.

Although most experts would probably agree on To the right of requirements is "software," the code
designating certain core activities as "testing," the we wish to verify or test. (For purposes of this mod-
boundary between what is and is not testing is not so ule, we may prefer to think of this box as being
easily agreed upon. labeled "software unit.") The requirements are in-

We believe that precise definitions are important and tended to (correctly) specify the software, to define

serve to sharpen one's understanding. We further what is and is not an acceptable implementation;

believe that testing, in the narrowest sense of execut- verification seeks to determine whether the intended

ing a software unit on selected data, has analogues in relationship is actually achieved. In practice, of

other software engineering activities-in the con- course, either the requirements or the software may

duct of software inspections, for example-that be defective.

might reasonably be called by that name if one were Unfortunately, software cannot be directly measured
willing to expand its meaning sufficiently. Such a against requirements. Instead, it is necessary to de-
generalization is tempting, but it demands the termine software characteristics through some proc-
thorough exploration of a large gray area through ess of analysis as one important step in verification.
which the resulting boundary of definition would A characteristic is a trait, quality, or property of the
have to pass. We have chosen to resist this tempta- software, whether intended or not. Both the number
tion, not only because of the inherent difficult it en- of vowels in the source code and the response of the
tails, but also because the generalization is likely to software when executed on a given input value are
seem more useful than it actually is. We therefore software characteristics. The former characteristic is
adopt a narrow definition of testing, one we think is determined through static analysis (i.e., without ex-
precise and useful, and which reflects the common ecuting the software) and the latter is usually deter-
understanding of the term. mined through dynamic analysis (i.e., by some proc-

The standards for software test documentation ess that does involves execution). "Software

[IEEE83] and for software unit testing [IEEE87], as characteristics" are shown in the lower right of the

well as the standard glossary of software engineer- figure. Through analysis, the software in question is

ing terms [IEEE9O], define many testing-related inferred to possess some set of software character-

terms. These definitions often clarify the meaning istics. Note that we do not say "possesses," as our

of words used inconsistently both in engineering analysis can be faulty-our argument that a loop al-

practice and in the literature. We have drawn from ways terminates contains a flaw-or it can lead to an

these sources wherever possible, though we must insufficiently qualified result-our observation that

point out that the standards are not 100% consistent the correct output is produced in response to a par-

with one another. We have introduced our own ticular input does not necessarily mean that the soft-

definitions where doing so seems useful. Funda- ware always does so, as its output may depend on an

mental terms (shown in italics) are discussed below internal state affected by earlier input or by some

and are collected in a glossary that begins on page unrecognized "input," such as time of day.

18.1 Where appropriate, citations of sources are
shown in the glossary. 2We will not attempt to distinguish between the form of requirements

and their abstract semantics. Because our definition of requirements
includes undocuumented expectations, sometimes there is no form we can

'Italicized terms outside this introduction do not necessarily appear in pin t to c

the glossary.

SEI-CM-9-2.0 5

Unit Analysis and Testing

In an ideal world, perhaps, verification would in- 2. Adequacy of testing
volve matching identified software characteristics to
correct, written requirements. So simple a process is As should be clear from the foregoing discussion,
almost never appropriate, however: not everything verification of software by testing or other means, is
gets written down; requirements can be incomplete, quite indirect. Required features and software char-
overspecified, or contradictory; stated requirements acteristics must be derived and compared, and an
can be too complex to test directly; particularly argument may need to be made that establishing the
when implied and commonsense but unstated re- presence of the features should be accepted as in-
quirements are accounted for, there may simply be dicating that the software indeed satisfies the re-
too many properties of the software to verify in quirements. There are many opportunities for
practice. It is therefore necessary to identify some making erroneous inferences, yet resource limita-
set of software features against which verification tions invariably dictate making inferences that are
takes place. The box in the lower left of the figure, probably, though not necessarily correct.4

therefore, represents such a collection of software To strengthen the conclusions that can be drawn
characteristics specified or implied by the require- from testing, it is necessary to judiciously constrain
ments. This collection, for purposes of verification, the verification process. Conditions that are re-
forms a (possibly inadequate) representation of what quired to be satisfied during testing are called
the software is supposed to be and to do. adequacy criteria (Weyuker86]. For example, test-

Whereas verification of a piece of software attempts ing may be considered inadequate if the test data do
to determine if that software actually implements the not include boundary cases specified by the require-
requirements (i.e., is within the class of acceptable ments, do not cause execution of every line of code.
implementations specified by the requirements), the or do not cause the software to deal with error-prone
task is actually carried out by attempting to show situations. The intent in establishing these criteria is
that the inferred software characteristics are suf- to improve the quality of the testing. As such, ade-
ficient to demonstrate that the required features are quacy criteria serve a purpose somewhat akin to
present. Of course, like the reasoning by which soft- software development standards, by requiring ad-
ware features and software characteristics are de- herence to methods that have previously proved suc-
rived, this process, too, is subject to error. cessful.

If the verification process relies on dynamic analysis When considering the quality of testing, it is cru-
to infer software characteristics (i.e., on analysis in- cially important not to confuse it with the quality of
volving executing the code), we say the verification the software being tested. This confusion can be
is a form of testing.3 Different methods of testing seen when the goodness of testing is measured by
appeal to the nature of requirements, to the code characteristics of the program derived from testing,
itself, or to insights into how errors in the devel- e.g., number of failures found, number of faults
opment process manifest themselves in requirements found, mean-time-to-failure, etc. These properties
or software, in order to suggest test data and test presume quality testing, rather than define it. Even
procedures. Test procedures include those for pro- correct software can be poorly tested. Useful ade-
gram execution, data collection, and assessment of quacy criteria seek to improve the likelihood of find-
the results. Program execution involves the activi- ingfaults in the software, if they exist, regardless of
ties of selecting test data and determining the ex- the quality of the software being tested.
pected output, constructing an environment for ex- Adequacy criteria act as both specifier and judge: as
ecuting the software with the selected data, and per- specifier by indicating the constraints that must be
forming the actual execution. Information to be col- satisfied by the testing, and as judge by indicating
lected from the execution may be obtained in a very deficiencies in a particular test. Adequacy criteria
straightforward manner, such as from observation of for testing are generally expressed by stating some
a screen display, or it may require instrumenting the required coverage the test data should achieve. De-
software with probes that reveal runtime behavior. sirable coverages include the required features, the
Assessin.g the results of execution involves inferring software structure, or the potential errors that might
software characteristics from the collected data and occur in the life cycle. These coverages are dis-
comparing those characteristics with the required cussed in depth below.
features to see if the presence of the required fea-
tures is indicated by the empirical evidence. No one testing technique is so clearly superior to

4 1f a software unit executes properly with integer inputs 1-43 and
3Compgre [IEEE9O]. In [IEEE83], testing is more broadly defined to 45-100, a reasonable person testing the unit and having no cause to
include both static and dynamic verification techniques. (See Glossary, believe the integer 44 is in any way special, is likely to conclude the unit
page 18.) performs satisfactorily for inputs 1-100.

6 SEI-CM-9-2.0

Unit Analysis and Testing

others that its exclusive use can be justified. Testing ance on an oracle. An oracle is a mechanism that
techniques are best seen as complementary rather judges whether or not a given output is correct for a
than competing forms of verification; different tech- given input. In some cases, no oracle may be avail-
niques tend to catch different faults. This fact is able, e.g., when the program is written to compute
reflected in the way testing techniques themselves an answer that cannot, in practice, be computed by
are classified in this module: specification-oriented, hand. Imperfect oracles may be available, but their
implementation-oriented, and error-oriented. Tech- use is risky. The absence of an oracle, or the
niques in each category focus on particular charac- presence of an imperfect oracle weakens significant-
teristics of the software system, leaving them sus- ly any conclusions drawn from testing.
ceptible to failing to uncover particular kinds of
faults. Refinements introduced by the programmer 4. Organization of this module
for efficiency may not be executed in a The remainder of this module is divided into four
specification-oriented test, for example, and a case sections, discussing analysis techniques, testing
required by the specification but omitted from the techniques, methods for evaluating testing tech-
code may not be tested in an implementation- niques, and methods for managing testing. Program
oriented test. If the errors sought in an error- analysis is treated first, as each testing technique
oriented test are too limited, faults detectable by uses one or more methods of analysis. We classify
other methods may be missed, analysis methods according to the view of the soft-

Testing is a principal activity used to assess software ware implicit in each technique. Our primary classi-
quality. Such assessment is a subjective judgment fication of testing techniques is according to the ade-
as to the suitability of a given technique or product quacy criteria they seek to satisfy. Secondary clas-
for a particular purpose. Evaluating software re- sifications refine the primary taxonomy as appro-
quires amassing as much information as possible priate. Once a thorough background is laid, evalu-

about its quality. Information produced by testing is ation and managerial issues are addressed.
a valuable component in that evaluation, since all II. Program Analysis Techniques
other forms of verification are further removed from
the operational environment of the software. In- Any technique that seeks to determine software charac-
ferences derived from particular test executions must teristics is a form of program analysis. Software char-
be tempered by considering the environmental fac- acteristics are essential in development, debugging,
tors (e.g., implicit inputs, compilers, operating sys- documentation, verification, evaluation, certification,
tems, hardware, etc.) that influence the program's and maintenance. This section discusses analysis tech-
behavior, however. Test results are therefore sus- niques that support verification in general, and testing
ceptible to misinterpretation in a manner similar to in particular. In addition, analysis can help decide
other verification techniques. where to focus testing.

3. Limitations of testing Analysis is employed in all stages of testing, including
test data selection, program execution, data collection.

Some problems cannot be solved on a computer be- and assessment of the results. Test data can be selected
cause they are either intractable or undecidable. An based upon consideration of various information
intractable problem is one whose best known solu- sources, including the specification, the implementa-
tion requires inordinate resources. An undecidable tion, and potential errors and faults. Collecting compu-
problem is one for which no algorithmic solution is tational information may require analysis of the pro-
possible. There are many such intractable and un- gram text and subsequent instrumentation of the pro-
decidable problems associated with analysis and gram. Program execution itself is a form of analysis.
testing. In general, programs cannot be exhaustively Establishing an oracle for verification may require ad-
tested (tested for each input) because to do so is both ditional analysis.
intractable and undecidable. Huang shows that to
test exhaustively a program that reads two 32-bit The analysis techniques discussed here are classified
integers would take on the order of 50 billion years according to the view they take of the program. Each
[Huang75]! Even if the input space is smaller, on the view emphasizes different aspects of the program and
very first input it may be the case that the program enables the determination of different program charac-
does not halt within a reasonable time. It may even teristics. Several predominant views are described be-
be the case that it is obvious the correct output will low, along with the analysis techniques they support.
be produced if the program ever does halt. Exhaus- Some analysis techniques employ more than one view.
tive testing can only be completed, therefore, if all The views below are roughly ordered by increasing
non-halting cases can be detected and eliminated, information content.
The problem of effecting such detection, however, is
undecidable. I. From a textual view

Another limitation on the power of testing is its reli- From a textual view, a program is treated as a se-
quence of characters or tokens. Many primitive

SEI-CM-9-2.0 7

Unit Analysis and Testing

metrics, such as program length and frequency of graph corresponds to a potentially executable se-
occurrence of identifiers, take this view. Text edi- quence of program elements. To execute a path is to
tors manipulate a program as a textual object, as do execute the corresponding sequence of program ele-
scanners, line counters, etc. Coding guidelines are ments. If a program input exists that causes execu-
frequently expressed from this viewpoint. Simple tion of a path, that path is called feasible; otherwise
prettyprinters can be based on this view. it is called infeasible. Programs with loops usually

have infinitely many paths; even without loops, a
2. From a syntactic view program may have intractably many paths to ana-

A program may be viewed as a hierarchy of syntac- lyze.
tic elements determined by the programming Control flow graphs have no labels or other annota-
language's grammar. Programs decompose into tions, distinguishing them from flowcharts, which
subprograms that decompose into statement groups capture additional program semantics. Control flow
that decompose into statements, etc., until the token capture ainal program semans. ntrol flowleve isreaced.Thissynacti viw ca beob-graphs are generally produced from a syntactic viewlevel is reached. This syntactic view can be ob- of a program for more efficient processing of control
tained from a textual view (e.g., by a parser) or may flow information. There are many program metrics
be constructed directly (e.g., by a syntax-directed based upon the control flow view of m program.
editor). Derivable program characteristics include
statement counts, identifier cross references, pro- 4. From a data flow view
gram call graphs (what procedure calls what
procedure), declared and undeclared variables, fre- The dataflow relation determined by a program re-
quency of variable use, and so on. Many sophis- lates program elements according to their data ac-
ticated program metrics are based on this view. cess behavior. If element B uses (refers to) a data

object that was potentially defined at element A,
The syntactic view supports program instrumenta- then (A, B) is in the data flow relation of the pro-
tion, in which source or object code is modified to gram. A dataflow graph [Fosdick76, Hecht77] is a
divulge its internal workings as it executes. During directed, labeled graph corresponding to the data
such execution, a variety of program characteristics flow relation, in which nodes correspond to program
can be determined, such as what statements and elements and directed arcs connect A to B with label
branches are executed. Execution counts or even v if (A, B) is in the data flow relation due to a defini-
complete trace information indicating the value tion of v at A and a use of v at B. Data flow graphs
computed by each expression can be generated. can be produced from the syntactic view for more
Probert presents algorithms for such instrumentation efficient processing of data flow information.
(using control flow graphs-see next section)
[Probert82], and Beizer discusses the levels of in- A program can be represented as a flow graph an-
strumentation and their resulting impact [BeizergO]. notated with information about variable definitions,
Instrumented code will necessarily be larger and references, and undefinitions. From this represen-
slower, so that executing it may mask timing, size, tation, information about data flow can be deduced
and position-related faults. for use in code optimization, anomaly detection, and

test data generation [Hecht77, Muchnick8l].
3. From a control flow view

Data flow anomalies are flow conditions that
A program's control flow relation relates program deserve further investigation, as they may indicate
elements according to their execution order. A pro- problems. Examples include: defining a variable
gram element is usually a condition, a single state- twice with no intervening reference, referencing a
ment, or a block of statements. If element B can be variable that is undefined, and undefining a variable
executed immediately after element A, then (A, B) is that has not been referenced since its last definition.
in the control flow relation of the program. Succes- Algorithms for detecting these anomalies are given
sor execution is determined independent of the com- in [Fosdick76] and [Osterweil76], and are refined and
putation performed at A. Thus, if A refers to the corrected in (Jachner84].
condition and B refers to the write statement in

if x<x then write(x) A program slice results from eliminating all state-
ments that cannt affect the computation of an zx-

then (A, B) is still in the control flow relation despite pression at a specified location [Weiser84]. Korel
the fact that A is always false. adapts slicing to testing and debugging in [KoreI88a],

[Korel8tb], and [Korel90b]. His method employs a
The graph corresponding to the control flow relation variation on a data flow graph called a program de-
is called a controlflow graph [Hecht77]. Each node pendence graph [Korel87].
of the graph corresponds to a program element; a
directed arc between two nodes indicates the cor- 5. From a computation flow view

responding two elements form an ordered pair in the A program can be viewed as a finite representation
control flow relation. A path through a control flow

8 SEI-CM-9-2.0

Unit Analysis and Testing

of a (potentially infinite) set of computations. A to determine the probability that an infected data
computation is a trace of the data states5 produced state will cause a program failure. [Voas91 gives
by a program when executing a particular input. A means of estimating the probability that execution,
thorough analysis of the computation flow of a pro- infection, and propagation will occur for faults and
gram induced by an execution may serve to estimate data states from particular classes. [More1188] and
the number of faults remaining in the code, the [Morell90] use symbolic execution (see below) to an-
strength of the test data to catch faults, and the abil- alyze potential error flow. Symbolic faults are intro-
ity of the program to hide faults. duced into the program, and the program is symbolh.

cally executed. The symbolic output captures the ef-Fault seeding is a statistical method used to assess feet the fault would have on the program compu
the number and nature of the faults remaining in a tation.
program. A reprint of Harlan Mills' original
proposal for this technique (where he calls it error 6. From a functional view
seeding) appears in [Mills83]. First, faults are seeded
into a program. Then the program is tested, and the Programs may be viewed as functions by conaerdnumber of faults discovered is used to estimate the ening them as denotations for a set of ordered p~arr,
number of faults yet undiscovered. A difficulty with (x, y), where y is the output produced by the progranmnumbr o fauts et udisoveed. dificuty iththat halts on input x [Mills75]. Executing the pro
this technique is that the faults seeded must be repre- that hon input x [binis Exepuing t p,sentative of the yet-undiscovered faults in the pro- gram for input x and observing its output (if an'.i t
gram. an analysis technique that provides direct evider'cof the program's function on the given input.
Mutation analysis uses fault seeding to investigate
properties of test data [Hamlet77a, Hamlet77b, Symbolic analysis seeks to describe the funcuw.
DeMillo78a, DeMillo881. Programs with seeded computed by a program in a more general way. A
faults are called mutants. Mutants are executed to symbolic execution system accepts three input: f s
determine whether or not they behave differently program to be interpreted, symbolic input for the
from the original program. Mutants that behave dif- program, and the path to follow. It produces to
ferently are said to have been killed by the test. The outputs: the symbolic output that describes the cond
product of mutation analysis is a measure of how putation of the selected path, and the path condtto,,
well test data kill mutants. Mutants are produced by frthat path interacthe spe ao of tre
applying a mutation operator. Such an operator path can be either interactive [Clarke76] or prT-
changes a single expression in the program to anoth- selected [Howden77. Howden78b]. The sympo ho
er expression, selected from a finite class of expres- output can be used to prove the program correct inth
sions. For example, a constant might be incre- respect to its specification, and the path condiston
mented by one, decremented by one, or replaced by can be used for generating test data to exercise thezryielding one of three mutants. Applying the desired path. Structured data types cause dift-
zero, yednonoftremtnsApligheficulties, however, since it is sometimes impossi blemutation operators at each point in a program where fi ce h o nent is beim ed.
they are applicable forms a finite, albeit large, set of to deduce what component is being modified.
mutants. III. Program Testing Techniques

Three conditions necessary and sufficient for a fault Testing is verification that relies on program execution
to cause a program failure are execution, infection, It includes all the activities associated with test data
and propagation [Morell90, Voas9l]. The fault loca- selection, program instrumentation and execution, and
tion must be executed, the resulting data state must analysis of the results.
be infected with an erroneous value, and the suc-
ceeding computation must propagate the infection Since the conclusions of testing are drawn from
through erroneous data states, producing a failure. execution-derived characteristics, the validity of the
[Richardson88] and [Morell90] discuss necessary conclusions is directly related to the accuracy with
conditions for infection and propagation to occur. which the execution in the test environment models an

execution in the target environment. Care must be
Sensitivity analysis [Foste.30, Voas91] investigates taken to ensure that all environmental factors are con-
the three conditions required for failure, with partic- sidered in assessing these characteristics. For example,
ular focus on infection and propagation of errors. all implicit inputs must be considered (e.g., the system
Infection analysis employs mutation analysis to de- clock, the state of files, the load location of the unit), as
termine the probability of a data state's being in- well as how representative of the actual environment
fected after a potentially faulty statement is ex- (e.g., same compiler, loader, operating system, com-
ecuted. Propagation analysis mutates the data state puter, input distribution) is the test environment.

The relationship of the test environment to the "real"
execution environment is of particular concern for

SThe data state of a program is the mapping of program variables symbolic execution. Relying on an interpreter raises
(including temporaries and the program counter) to values.

SEI-CM-9-2.0 9

Unit Analysis and Testing

additional concerns as to faithfulness to the program- (i) Testing based on the interface
ming language and hardware specifications. It is im-
possible to be dogmatic about what should be consid- Testing based on the interface of a module se-
ered a representative execution. It is usually better to lects test data based on the features of the input
err on the side of caution when interpreting the results and output domains of the module and their
of a given execution, however, interrelationships.

Test data selection may be guided by several sources: (1) Input domain testing
the specification, the implementation, potential errors In extremal testing, test data are chosen to
in the programming process, or some combination cover the extremes of the input domain.
thereof. The testing techniques discussed below are Similarly, midrange testing selects data from
organized according to these diverse sources. the interiors of domains. The motivation is
Specification-oriented testing seeks to show that every inductive-it is hoped that conclusions
required software feature is addressed by some aspect about the entire input domain can be drawn
of the software. Implementation-oriented testing at- from the behavior elicited by some represen-
tempts to show that the implementation contains no tative members of it [Myers79]. For struc-
surprises, by showing that various aspect of the code tured input domains, combinations of ex-
can be exercised without violating the requirements. tremal points for each component are cho-
Error-oriented testing seeks to show that certain errors sen. This procedure can generate a large
in the programming process have not occurred. quantity of data, though considerations of
1. Specification-oriented testing the inherent relationships among compo-

nents can ameliorate this problem somewhat
Program testing is specification-oriented when test [Howden80b].
data are developed from documents and understand-
ings intended to specify a module's behavior. (2) Equivalence partitioning
Sources include, but are not limited to, the actual Specifications frequently partition the set of
written specification and the high- and low-level de- all possible inputs into classes that receive
signs of the code to be tested [Howden80aj. The equivalent treatment. Such partitioning is
goal is to test for the presence of each (required) called equivalence partitioning [Myers79].
software feature, including the input domains, the A result of equivalence partitioning is the
output domains, categories of inputs that should identification of a finite set of functions and
receive equivalent processing, and the processing their associated input and output domains.
functions themselves. For example, the specification

Specification-oriented testing seeks to show that ((x,y)I x>O D y=x & xc<O D y=-x}
every requirement is addressed by the software. An
unimplemented requirement may be reflected in a partitions the input into two sets, associated,
missing path or missing code in the software. respectively, with the identity and negation
Specification-oriented testing assumes a functional functions. Input constraints and error con-
view of the software and sometimes is called ditions can also result from this partitioning.
functional or black-box testing [Howden86]. Once these partitions have been developed,

both extremal and midrange testing are ap-
a. Testing independent of the specification plicable to the resulting input domains.

technique [Duran8l], [Duran84], and [Hamlet90] com-
Specifications detail the assumptions that may be pare equivalence partitioning to random test-
made about a given software uniL They must ing, on the basis of statistical confidence in
describe the interface through which access to the the probability of failure after testing is
unit is given, as well as the behavior once such complete.
access is given. The interface of a unit includes
the features of its inputs, its outputs, and their (3) Syntax checking
related value spaces (called domains). The Every robust program must parse its input
behavior of a module always includes the and handle incorrectly formatted data. Veri-
function(s) to be computed (its semantics), and fying this feature is called syntax checking
sometimes the runtime characteristics, such as its [Beizer90]. One means of accomplishing
space and time complexity. Specification- this is to execute the program using a broad
oriented testing derives test data from aspects of spectrum of test data. By describing the
the specification. data with a BNF grammar, instances of the

input language can be generated using algo-
rithms from automata theory. (Duncan81]

10 SEI-CM-9-2.0

Unit Analysis and Testing

and [Bazzichi82] describe systems that pro- guide the testing process. If the specification falls
vide limited control over the data to be gen- within certain limited classes, properties of those
erated. classes can guide the selection of test data. Much

(ii) Testing based on the function to be work remains to be done in this area of testing.

computed (i) Algebraic

Equivalence partitioning results in the identifi- In algebraic specification, properties of a data
cation of a finite set of functions and their asso- abstraction are expressed by means of axioms
ciated input and output domains. Test data can or rewrite rules. In one testing system,
be developed based on the known character- DAISTS, the consistency of an algebraic speci-
istics of these functions. Consider, for ex- fication with an implementation is checked by
ample, a function to be computed that has fixed testing [Gannon81). Each axiom is compiled
points, i.e., certain of its input values are into a procedure, which is then associated with
mapped into themselves by the function. Test- a set of test points. A driver program supplies
ing the computation at these fixed points is each of these points to the procedure of its
possible, even in the absence of a complete respective axiom. The procedure, in turn, in-
specification [Weyuker82]. Knowledge of the dicates whether the axiom is satisfied. Struc-
function is essential in order to ensure adequate tural coverage of both the implementation and
coverage of the output domains, the specification is computed. [Jalote89] dis-

cusses an approach to generating test data to
(1) Special value testing verify the completeness of an algebraic specifi-

Selecting test data on the basis of features of cation. Algebraic methods are applicable to
the function to be computed is called special testing object-oriented programs.
value testing [Howden8Ob]. This procedure (ii) Axiomatic
is particularly applicable to mathematical
computations. Properties of the function to Despite the potential for widespread use of
be computed can aid in selecting points that predicate calculus as a specification language,
will indicate the accuracy of the computed little has been published about deriving test
solution. For example, the periodicity of the data from such specifications. [Gourlay83]
sine function suggests use of test data values references work done on the relationship be-
which differ by multiples of 2ir. Such char- tween predicate calculus specifications and
acteristics are not unique to mathematical path testing.
computations. Most prettyprinters, for ex- (iii) State machines
ample, when applied to their own output,
should reproduce it unchanged. Some word Many programs can be specified as state
processors behave this way as well. machines, thus providing additional means of

(2) Output domain coverage selecting test data [Beizer90]. Since the equiv-
alence problem of two finite automata is decid-

For each function determined by equiv- able, testing can be used to decide whether a
alence partitioning, there is an associated program that simulates a finite automaton with
output domain. Output domain coverage is a bounded number of nodes is equivalent to the
performed by selecting points that will cause one specified. This result can be used to test
the extremes of each of the output domains those features of programs that can be specified
to be achieved [Howden80b]. This ensures by finite automata, e.g., the control flow of a
that units have been checked for maximum transaction-processing system.
and minimum output conditions and that all
categories of error messages have, if pos-
sible, been produced. In general, construct- Decision tables are a concise method of
ing such test data requires knowledge of the representing an equivalence partitioning. The
function to be computed and, hence, exper- rows of a decision table specify all the con-
tise in the application area. ditions that the input may satisfy. The columns

b. Testing dependent on the specification specify different sets of actions that may occur.
Entries in the table indicate whether the actions

technique should be performed if a condition is satisfied.

The specification technique employed can aid in Typical entries are "Yes," "No," or "Don't

testing. An executable specification can be used Care." Each row of the table suggests signif-

as an oracle and, in some cases, as a test gener- icant test data. Cause-effect graphs [Myers79]

ator. Structural properties of a specification can provide a systematic means of translating
English specifications into decision tables,
from which test data can be generated.

SEI-CM-9-2.0 11

Unit Analysis and Testing

2. Implementation-oriented testing gram are actually exercised during testing. The
inexpensive cost of such instrumentation has been

In implementation-oriented program testing, test a prime motivation for adopting structure-oriented
data selection is guided by information derived from techniques [Probert82]. Further motivation comes
the implementation [Howden75]. The goal is to en- from consideration of the consequences of releas-
sure that various computational characteristics of the ing a product without having executed all its parts
software are adequately covered. It is hoped that and having the customer discover faults in un-
test data that satisfy these criteria have higher proba- tested code.
bility of discovering faults. Each execution of a pro-
gram executes a particular path. Hence, implemen- There are three essential components to be
tation-oriented testing focuses on the following covered in structure-oriented testing: computa-
questions: What computational characteristics are tions, branches, and data. These are discussed
desirable to achieve? What paths for this program below.
achieve these characteristics? What test data will
execute those paths? What are the computational (i) Statement testing
characteristics of the set of paths executed by a Statement testing requires that every statement
given test set? in the program be executed. While it is ob-

Implementation-oriented testing addresses the fact vious that achieving 100% statement coverage
that only the program text reveals the detailed deci- does not ensure a correct program, it is equally
sions of the programmer. For the sake of efficiency, obvious that anything less means that there is
a programmer might choose to implement a special code in the program that has never been ex-
case that appears nowhere in the specification. The ecuted!
corresponding code will be tested only by chance (ii) Branch testing
using specification-oriented testing, whereas use of a
structural coverage measure such as statement Achieving 100% statement coverage does not
coverage (see below) should indicate the need for ensure that each branch in the program flow
test data for this case. graph has been executed. For example, execut-

ing an if ... then statement (no else) when the
Implementation-oriented testing schemes may be tested condition is true, tests only one of two
classified according to two orthogonal axes: error branches in the flow graph. Branch testing
orientation and program view, discussed earlier in seeks to ensure that every branch has been ex-
Section II. A testing scheme's error orientation is ecuted [Huang75, Tai80]. Branch coverage can
the aspect of fault discovery that is emphasized: ex- be checked by probes inserted at points in the
ecution, infection, or propagation (see Section 11.5). program that represent arcs from branch points
A testing scheme's program view is the program ab- in the flow graph [Probort82]. This instrumen-
straction source that is used to determine desirable tation suffices for statement coverage as well.
computational characteristics: control flow, data
flow, or computation flow. Program view empha- (iii) Data coverage testing
sizes how a particular strategy works; error orien- In some programs, a portion of the flow control
tation emphasizes the motivation behind the strategy is determined by the data, rather than by the
and helps one to better evaluate claims made about code. Knowledge-based applications, some At
the strategy. applications, and table-driven code are all ex-

The subsequent sections are organized by error ori- amples of this phenomenon. Data coverage
entation. Techniques that require execution of par- testing seeks to ensure that various components
ticular program elements are presented first, fol- of the data are "executed," i.e., they are
lowed by those that attempt to force infections, and referenced or modified by the interpreter as it
those that attempt to force propagation. It should be executes. Paralleling statement testing, one
noted that infection and propagation techniques both can ensure that each data location is accessed.
require execution, and some techniques emphasize Furthermore, in the area of knowledge bases,
all three conditions. Within each section, the tech- data items can be accessed in different orders,
niques are ordered by program view: control flow, so it is important to cover each of these access
then data flow, then computation flow. orders. These access sequences are analogous

to branch testing.
a. Structure-oriented testing torintestesin

A testing technique is structure-oriented if it

seeks test data that cause various structural as- A testing technique is considered infection-
pects of the program to be exercised. Assessing oriented if it seeks to establish conditions suitable
the coverage achieved may involve instrumenting for infections to arise at locations of potential
the code to keep track of which parts of the pro- faults. This section characterizes several testing

12 SEI-CM-9-2.0

Unit Analysis and Testing

techniques that require test data to force infec- (iv) Perturbation testing
tions if faults exist.

Perturbation testing attempts to determine a
(i) Conditional testing sufficient set of paths to test for various faults

in the code. Faults are modeled as a vector
Jn conditional testing, each clause in every space, and characterization theorems describecondition is forced to take on each of its pos- when sufficient paths have been tested to dis-

sible values in combination with those of other coer bot patho a n d eors.
claues Huan75] Coditinaltestng huscover both computation and domain errors.

clauses [Huang75]. Conditional testing thus Additional paths need not be tested if they can-
subsumes branch testing. Instrumentation for not reduce the dimensionality of the error spaceconditional testing can be accomplished by[Zi8,ei8]

breaking compound conditional statements into [ZeiI83, Ui88].

simple conditions and nesting the resulting if (v) Fault sensitivity testing
statements. This reduces the problem of con-
ditional coverage to the simpler problem of (Foster8O] describes a method for selecting test
branch coverage, enabling algorithms from the data that are sensitive to faults. Howden has
control flow view to be employed, formalized this approach in a method called

weak mutation testing [Howden82]. Rules for
(ii) Expression testing recognizing fault-sensitive data are described

for each primitive language construct. Satis-Expression testing [Hamlet77a] requires that faction of a rule for a given construct during
every expression assume a variety of values testing means that all alternate forms of that
during a test in such a way that no expression construct have been distinguished. This has an
can be replaced by a simpler expression. If one obvious advantage over mutation testing

assumes that every statement contains an ex- (discussed later)-elimination of all mutants

pression and that conditional expressions form wiscu ts generatin ingleon ofelrules
a proper subset of all the program expressions, without generating a single one! Some rules

then this form of testing properly subsumes all even allow for infinitely many mutants.

the previously mentioned techniques. Expres- c. Propagation-oriented testing
sion testing requires significant runtime sup-port for the instrumentation [Harnlat77]. A testing technique is considered propagation-

oriented if it seeks to ensure that potential infec-

(iii) Domain testing tions propagate to failures. This requires select-

The input domain of a program can be par- ing paths to test based on their propagation char-

titioned according to which inputs cause each acterstics.
path to be executed. These partitions are called (i) Path testing
path domains. Faults that cause an input to be
associated with the wrong path domain are In path testing, data are selected to ensure that
called domain faults. Other faults are called all paths of the program have been executed
computation faults. (The terms used before at- [Howden76]. In practice, of course, such
tempts were made to rationalize nomenclature coverage is impossible to achieve, for a variety
were domain errors and computation of reasons. First, any program with an in-
errors.) The goal of domain testing is to dis- definite loop contains infinitely many paths,
cover domain faults by ensuring that test data one for each iteration of the loop. Thus, no
limit the range of undetected faults [White80]. finite set of data will execute all paths. The
This is accomplished by selecting inputs close second difficulty is the infeasible path prob-
to boundaries of the path domain. If the lem: it is undecidable whether an arbitrary path
boundary is incorrect, these points increase the in an arbitrary program is executable. At-
chance of an infection's occurring. Domain tempting to generate data for such infeasible
testing assumes coincidental correctness does paths is futile, but it cannot be avoided. Third,
not occur, i.e., it assumes a program will fail if it is undecidable whether an arbitrary program
an input follows the wrong path.6 [Clarke82] will halt for an arbitrary input. It is therefore
refines the fault detection capability of this ap- impossible to decide whether a path is finite for
proach by requiring points to be selected that a given input.
further limit the amount a boundary can shift In response to these difficulties, several
without an infection's occurring. simplifying approaches have been proposed.

Infinitely many paths can be partitioned into a
finite set of equivalence classes based on char-

6The definition of coincidental correctness has since been broadened to acteristics of the loops. Boundary and interior
include any situation in which a fault is executed without an ensuing testing requires executing loops zero times, one
failure, time, and, if possible, the maximum number of

SEI-CM-9-2.0 13

Unit Analysis and Testing

times [Howden75]. Linear sequence code and correctly uses a particular definition, but that
jump criteria [Woodward80] specify a hierar- combination is never tried during a test, the
chy of successively more complex path fault will not be detected.
coverages. [Howden78a], [Tai80], [Gourlay83],
[Weyuker86], and [Ntafos88] suggest methods Data flow connections may be determined
of studying the adequacy of path testing. statically [Rapps85] or dynamically [Korel88b].

Some connections may be infeasible due to the
Path coverage does not imply condition presence of infeasible subpaths. Heuristics
coverage or expression coverage, since an ex- may be developed for generating test data
pression may appear on multiple paths but based on data flow information [KoreI88b].
some subexpressions may never assume more
than one value. For example, in (iv) Mutation testing

if avb then S, else S2 Mutation testing uses mutation analysis to
judge the adequacy of test data. The test data

b may be false and yet each path may still be are judged adequate only if each mutant is ei-
executed. ther functionally equivalent to the original pro-

(ii) Compiler-based testing gram or computes output different from the
original program on the test data. Inadequacy

In [Hamlet77a] and [Hamlet77b], a compiler of the test data implies that certain faults can be
augmented to judge the adequacy of test data is introduced into the code and go undetected by
described. Input-output pairs are encoded as a the test data.
comment in a procedure, as a partial specifi- Mutation testing is based on two hypotheses
cation of the function to be computed by that [DeMillo7nt]. The competent programmer
procedure. The procedure is then executed for hypothesis says that a competent programmer
each of the input values and checked for the will write code that is close to being correct-
output values. The test is considered adequate the correct program, if not the current one, can
only if each computational or logical expres- be produced by some straightforward syntactic
sion in the procedure is determined by the test;i.e., no expression can be replaced by a simpler changes to the code. The coupling effect
i ~e.,nonand still pass the test. Simpler i hypothesis says that test data that reveal simple
expression afaults will uncover complex faults. Thus, only
defined in a way that allows only finitely many single mutants need be eliminated, and coin-
substitutions. Thus, as the procedure is ex- binatoric effects of multiple mutants need not
ecuted, each possible substitution is evaluated be considered [DeMofmtp. mGourlays3] for-
on the data state presented to the expression. mally character= the competent programmer
Those that do not evaluate the same as the orig- hypothesis as a function of the probability of
inal expression are rejebte Substitutions that the test set's being reliable (as defined by
evaluate the same, but ultimately produce Gourlay) and shows that under this charac-
failures, are likewise rejected. terization, the hypothesis does not hold. Em-

(iii) Data flow testing pirical justification of the coupling effect has
been attempted [Budd8O, DeMillo78a, Offutt89],

Data flow analysis can form the basis for test- but theoretical analysis has shown that it may
ing, exploiting the relationship between points hold probabilistically, but not universally
where variables are defined and points where [Gourlay83, MoroI188].
they are used [Frankl88, Laski83, Ntafos84,
Ntafos88, Podgurski9O, Rapps85]. By insisting 3. Error-oriented testing
on the coverage of various definition-use Testing is necessitated by the potential presence of
pairs,7 data flow testing establishes some of the errors in the programming process. Techniques that
conditions necessary for infection and partial focus on assessing the presence or absence of errors
propagation. The motivation behind data flow in the ssingathe process are called error-
testing is that test data are inadequate if they do orientedp
not exercise these various def-use combina-
tions. It is clear that an incorrect definition that a. Error-based testing
is never used during a test will not be caught
by that test. Similarly, if a given location in- Error-based testing seeks to demonstrate that cer-

tain errors have not been committed in the pro-
gramming process [Weyuker8O]. Error-based test-
ing can be driven by histories of programmer er-

71f a variable x is defined at location A. referenced (or used) at location rors, measures of software complexity, knowi-
B, and there is a path fron A to B with no intervening definition of x, edge of error-prone syntactic constructs, or even

then (A. B) is a defiition-we, pair. error guessing [Myers79].

14 SEI-CM-9-2.0

Unit Analysis and Testing

Error-based testing begins with the programming combining several techniques. Such integrated tech-
process, identifies potential errors in that process niques are called hybrid testing techniques. These
and then asks how those errors are reflected as are not just the concurrent application of distinct
faults. It then seeks to demonstrate the absence of techniques; they are characterized by a deliberate at-
those faults. Howden has classified errors into tempt to incorporate the best features of different
two categories: abstraction and decomposition, methods into a single new technique.
and he has developed specific techniques for ad-
dressing these categories [Howden89, Howden9O]. In partition analysis, test data are chosen to ensure

simultaneous coverage of both the specification and
b. Fault-based testing code [Richardson85]. An operational specification

language has been designed that enables a structural
Fault-based testing aims at demonstrating that measure of coverage of the specification. The input

space is partitioned into a set of domains that is

Fault-based testing methods differ in both extent formed by the cross product of path domains of the
and breadth. One with local extent demonstrates specification and path domains of the program. Test
that a fault has a local effect on computation; it is data are selected from each non-empty partition, en-
possible that this local effect will not produce a suring simultaneous coverage of both specification
program failure. A method with global extent and code. Proof of correctness techniques can also
demonstrates that a fault will cause a program be applied to these cross product domains.
failure. Breadth is determined by whether the The testing system DAISTS predates and automates
technique handles a finite or an infinite class of this technique for algebraic specifications of abstract
faults. Extent and breadth are orthogonal. data types, but it does not include any notion of
Infection- and propagation-ý'ncnted techniques proof of correctness [Gannon8 1]. Furthermore, the
could be classified as fault-based if they are inter- emphasis in DAISTS is on test data evaluation,
preted as seeking to demonstrate the absence of rather than generation. [Goodenough75] presents a
particular faults. Infection-oriented techniques less formal, integrated scheme for selecting test data
are of local extent. based on analysis of sources of errors in the pro-
[Morel188] and [MoreII90] define a fault-based gramming process. (Richardson89] applies process
method based on symbolic execution that permits programming to the problem of interacting testing
elimination of infinitely many faults through techniques.
evidence of global failures. Symbolic faults are IV. Evaluating Unit Analysis and Testing
inserted into the code, which is then executed on Techniques
real or symbolic data. Program output is then an
expression in terms of the symbolic faults. It thus The effectiveness of unit analysis and testing may be
reflects how a fault at a given location will impact evaluated on theoretical or empirical grounds
the program's outpuL This expression can be [Howden78a]. Theory seeks to understand what can be
used to determine actual faults that could not have ''Ndone in principle; empirical evaluation seeks to estab-
been substituted for the symbolic fault and remain lish what techniques are useful in practice. Theory
undetected by the test. formally defines the field and investigates its funda-

c. Probable correctness mental limitations. For example, it is well known that
testing cannot demonstrate the correctness of an ar-

Probable correctness is defined by Hamlet to be bitrary program with respect to an arbitrary specifi-
the probability that no faults exist in a tested pro- cation. This does not mean, however, that testing can
gram [Hamlet87]. Early intimations of this con- never verify correctness; indeed, in some cases it can
cept may be found in [DeMillo78b] and [Howdon78c, Tai8O]. Empirical studies evaluate the
[Rowland81], where particular classes of functions utility of various practices. Though statement testing is
have members that can be distinguished from theoretically deficient, it is immensely useful in prac-
other members by a finite test set. As such, each tice, exposing many program faults.
successful execution increases confidence that the IEE has sponsored several workshops on testing,
implemented function is correct. [Hamlet90] ex- analysis, and verification. The National Bureau of
plores the concept when no a priori bound can be Standards has issued a special publication that de-
placed on the number of executions needed. He scribes many of the techniques mentioned in this mod-
bounds the number of inputs needed to obtain ule and characterizes each approach according to effec-
high confidence in a high probability of correct- tiveness, applicability, learning, and cost [Powol182].
ness. The Strategic Defense Initiative Organization commis-

4. Hybrid Testing Techniques sioned a study of the state of the art in verification
techniques that resulted in an extensive overview of the

Since it is apparent that no one testing technique is field [Youngblut89] and with an in-depth annotated bib-
sufficient, some experts have investigated ways of liography [Brykczynski89].

SEI-CM-9-2.0 15

Unit Analysis and Testing

1. Theoretical evaluation * Computer Software and Applications Con-

Theory serves three fundamental purposes: to define ference

terminology, to characterize existing practice, and to e Testing, Analysis, and Verification Con-
suggest new avenues of exploration. Unfortunately, ference
historical terminology is inconsistent. A simple ex- * International Conference on Testing Com-
ample is the word reliable, which is used by authors puter Software
in related, but diverse ways. (Compare, for ex- * Software Testing and Review Conference
ample, [Duran8l], [Goodenough7S], [Howden76],
and [Richardson85], and do not include any literature V. Managerial Aspects of Unit Analysis and Testing
from reliability theory!) [IEEE83] is an appropriatestarting point for examining terminology, but it is Administration of unit analysis and testing proceeds in
imprecise pint placesaminind wastestabolshed bumantwo stages. First, techniques appropriate to the projectim precise in places and was established m any yearsmu tb se c ed Th e t c ni es u tt en e ap
after certain (in retrospect, unfortunate) terminology must be selected. These techniques must then be ap-
had become accepted.8 Theoretical treatments of plied systematically. [IEEE87] provides explcit
topics in program testing are ever expanding. guidance for these steps.
Goodenough and Gerhart, in [Goodenough75], made 1. Selecting techniques
an attempt to rationalize terminology, though this
work has been criticized, particularly in Selecting the appropriate techniques from the array
[Weyukar8O]. Nevertheless, they anticipated the vast of possibilities is a complex task that requires as-
majority of practical and theoretical issues that have sessment of many issues, including the goal of test-
since evolved in program testing. [Goodenough75] ing, the nature of the software product, and the na-
is therefore required reading. Howden and Weyuker ture of the test environment. It is important to re-
have both written theoretical expositions on member the complementary benefits of the various
specification-, implementation-, and error-oriented techniques and to select as broad a range of tech-
testing [Howden76, Howden78a, Howden78c, niques as possible, within constraints of time, cost,
Howden82, Howden86, Rapps85, Weyuker8O, etc. No single analysis or testing technique is suf-
Weyuker82, Weyuker84, Weyuker86]. Theoretical ficient [Gerhart76]. Specification-oriented testing
expositions of mutation and fault-based testing are may suffer from inadequate code coverage,
found in [Budd8O], [Budd82], [Chemiavsky87], implementation-oriented testing may suffer from in-
[Davis88], [Gourlay83], [Hamlet77a], [Morell881, and adequate specification coverage, and neither tech-
[Morell90]. [Rowland8l1]. [Clarke89], [Podgurski9O], nique guarantees the benefits of error-oriented
and [Z9i0881 present frameworks for understanding coverage.
data flow testing. 2. Goals

2. Empirical evaluation Different design goals impose different demands on

Empirical studies provide benchmarks by which to the selection of testing techniques. Achieving cor-
judge existing testing techniques. An excellent com- rectness requires use of a great variety of techniques.
parison of techniques is found in [HowdenB0a], A goal of reliability implies the need for statistical
which emphasizes the complementary benefits of testing using test data representative of those of the
different testing methods applied to scientific pro- anticipated user environment. It should be noted,
grams. Empirical studies of mutation testing are dis- however, that statistical testing still requires judi-
cussed in [BuddS0]. [Basili87] compares the effec- cious use of "selective" tests to avoid embarrassing
tiveness of code-reading, specification-oriented test- or disastrous situations. Testing may also be di-
ing, and implementation-oriented testing. rected toward assessing the usability of software.
[Weyuker88] discusses an empirical study of the This kind of testing requires a solid foundation in
complexity of data flow testing. human factors [Pedman90]. Performance of the

software may also be of special concern. In this
Many papers discussing experience with testing case, extremal testing is essential. Timing in-
techniques can be found in conference proceedings, strumentation can prove useful.
especially proceedings of the following:

"* ACM Symposium on Principles of Pro- Often, several of these goals must be achieved
gramming Languages simultaneously. Recent attempts in process pro-

gramming have sought to address this issue
"* International Conference on Software En- [Richardson89]. One approach to testing under these

gineering circumstances is to order testing by decreasing bene-
fit. For example, if reliability, correctness, and per-
formance are all desired features, it is reasonable to
tackle performance first, reliability second, and cor-

$For instance, the terminology error-based testing and error seeding rectness third, since these goals require increasingly
became well-established long before the standard told us to use faidt.

16 SEI-CM-9-2.0

Uni Analysis and Testing

difficult-to-design tests. This approach can have the much the same manner as is done for a BNF
beneficial effect of identifying faulty code with less grammar. Inconsistencies must be detected,
effort expended. redundancies eliminated, loops broken, etc. Sym-

bolic execution and data flow analysis appear to
3. Nature of the product be applicable to this stage. Second, each piece of

The nature of the software product plays an impor- information in the knowledge base must be ex-

tant role in the selection of appropriate techniques. ercised. Mutation analysis applied to the knowl-
Four representative types of software products are edge base detects the information whose change

discussed below, does not affect the output and, thus, is not suf-
ficiently exercised. Third, test case design and

a. Data processing evaluation must be conducted by experts in the

Data processing applications appear to benefit application domain.

from most of the techniques described in this d. Embedded and real-time systems
module. Conventional languages such as CO-
BOL are frequently used, increasing the likeli- Embedded and real-time systems are perhaps the

hood of finding an instrumented compiler for do- most complex systems to specify, design, and im-

ing performance and coverage analysis. Func- plement. It is no surprise that they are partic-

tional test cases are typically easy to identify ularly hard to verify [Carver9l, Tai9l, Weiss88].

[Redwine83]. Even domain testing, with its many Embedded computer systems typically have in-

restrictions, seems applicable, since most predi- convenient interfaces for defining and conducting
cates in data processing programs are linear tests. Ultimately, the code must execute on the

[Whiteo80]. embedded computer in its operational environ-
ment. Operational testing is performed in this

b. Scientific computation environment.

Howden analyzed a variety of verification tech- Unit testing in an operational environment is
niques on the IMSL routines [Howden80a]. He rarely possible. The equipment is seldom avail-
concluded that functional and structure-oriented able and may lack conventional input and output.
testing are complementary, that neither is suf- In these cases, the embedded computer can be
ficient, and that sometimes a hybrid approach is placed in a controlled environment that simulates
necessary to cover extremal values while simul- the operational one. This provides the capability
taneously executing a particular path. Static veri- of conducting a system test. Timing constraints
fication methods found fewer errors in Howden's must be verified here. To assess time-critical
study, but their earlier application in the life cycle software, it is essential to collect data in as un-
may increase their effectiveness. Extremal value obtrusive a manner as possible. Typically, this
testing and special value testing are vital to scien- requires hardware instrumentation, though soft-
tific programs. Statistical testing is perhaps less ware breakpoints sometimes suffice. Data from
appropriate, since these programs are frequently several points of instrumentation must be coor-
constructed to solve problems whose character- dinated and analyzed; such a process is called
istics are not known in advance. The IMSL pack- data reduction.
age illustrates this; the designers of the package
cannot make "reasonable" assumptions about the If the simulated environment does not support
distribution of arguments to the sine routine, for unit testing, the embedded computer itself must
instance, be abstracted. The software can be written in

assembly language, and the embedded computer
c. Expert systems can be simulated on another machine; or the soft-

Expert systems pose unique challenges to verifi- ware can be written in a high-level language, such
cation. Coverage of the executable code is of as Ada, which can be cross-compiled to the targetcatin. overge f th excutale odemachine. At this level of abstraction, unit anal-
little use, since the behavior of the system is dom- ysind tetin are os sthecgoal uringathis
inated by the knowledge base. Difficulties arise ysis and testing are possible. The goal during this
in assuring the consistency of this knowledge stage is to assess correctness of individual units.
bass g Thes ronteny ois knowlunded bythedgeli- Functional testing is essential, especially ex-
basce. Tnhisan experoblm sis c copoun byetheei- tremal, midrange, and special value testing, since
ance on human experts, since precise behavior is it is impossible to ensure these tests will occur
difficult to specify. A good survey of the prob- during integration or system testing. Data flow
lems related to validation of expert systems ap- analysis of the code, especially if the system is
pears in [Hayes-Roth83]. written in assembly language, is appropriate. A

Three steps can be identified as minimal require- simulator can be instrumented to collect neces-

ments for verification of an expert system. First, sary code coverage statistics and enable replaying

it is necessary to clean up the knowledge base in of the previous executions [Carver9l, Tai9l].

SEI-CM-9-2.0 17

Unit Analysis and Testing

Static analysis of concurrency based on symbolic ment, including the test plan, test procedures, test
execution is described in (Young88]. data, and test results. A formal description of

these and related items is found in [IEEE83]. The
4. Nature of the testing environment test plan specifies the goals, environment, and

Available resources, personnel, and project con- constraints imposed on testing. The test proce-
straints must be considered in selecting testing and dures detail the step-by-step activities to be per-
analysis strategies. formed during the test. Regression testing occurs

when previously saved test data are used to test
a. Available resources modified code. Its principal importance is that it

ensures previously attained functionality has not
Available resources frequently determine the ex- been lost during a modification. Test results are
tent of testing. If the compiler does not instru- recorded and analyzed for evidence of program

ment code, if data flow analysis tools are not at failures. Software with a history of frequent

hand, if exotic tools for mutation testing or sym- failures may be a candidate for redesign or

bolic evaluation are not available, one must per- failem enation.

form functional testing and instrument the code reimplementation.

by hand to detect branch coverage. Hand in- b. Conducting tests
strumentation is not difficult, but it is an error-
prone and time-consuming process. Editor scripts A test bed is an integrated system for testing soft-
can aid in this process. If resources permit, suc- ware. Many such systems exist as commercial

cessively more complex criteria involving branch products. Minimally, they provide the ability to

testing, data flow testing, domain testing, and define a test case, construct a test driver, execute

fault-based testing can be tried, the test case, and capture the output. Additional
facilities provided by such systems typically in-

b. Personnel clude data flow analysis, structural coverage as-
sessment, regression testing, test specification,

No technique is without its personnel costs. Be- and rep renrion [es cibesaS-
foreintoducng ny ew tchnqueor toltheand report generation. [Frank188] describes AS-

fore introducing any new technique or tool, the SET, a system for analyzing data flow coverage

impact on personnel must be considered. The ad- of a syst case.

vantages of any approach must be balanced of a test case.

against the effort required to learn the technique,
the ongoing time demands of applying it, and the
expertise it requires. Domain testing can be quite
difficult to learn. Data flow analysis may uncover Glossary
many anomalies that are not errors, thereby re-
quiring personnel to sort through and distinguish The following terminology is used throughout the
them. Special value testing requires expertise in module, except possibly in the abstracts in the bibli-
the application area. Analysis of the impact on
personnel for many of the techniques in this mod- ography. Additional terms are defined in the text.
ule can be found in [PoweIl182]. Note that older literature is replete with inconsis-

tencies in the use of such terms as "error," "failure,"
c. Project constraints and "fault." Consistent use of these terms has been

The goal in selecting analysis and testing tech- attempted here, but such consistency may itself lead

niques is to obtain the most benefit from testing to confusion in the many cases where "modem"

within the project constraints. Testing is indeed usage conflicts with prior usage in the literature.
over when the budget or the time allotted to it is
exhausted, but this is not an appropriate definition adequacy criteria
of when to stop testing [Myers79J. Estimates in- Conditions that must be satisfied before testing
dicate that approximately 40% of software devel- is considered complete.
opment time is used in the testing phase.
Scheduling must reflect this fact. analysis

5. Control The process of determining software character-

To ensure quality in unit analysis and testing, it is istics. Analysis is dynamic if it is execution-

necessary to control both documentation and the based, otherwise it is static.

conduct of the test.
coverage

a. Configuration control Used in conjunction with a software feature or

Several types of items from unit analysis and test- characteristic, the degree to which that feature or

ing should be placed under configuration manage- characteristic is tested or analyzed. Examples

18 SEI-CM-9-2.0

Unit Analysis and Testing

include input domain coverage, statement test bed
coverage, branch coverage, and path coverage. An environment containing the hardware, in-

strumentation, simulators, software tools, and
error other support elements needed to conduct a test

A human action that produces an incorrect result [IEEE90].
[IEEE90].

test data
failure Data developed to test a system or system corn-

The inability of a system or component to per- ponent [IEEE83].
form its required functions within specified per-
formance requirements [IEEE90]. testing

Verifying a system or component using software
fault characteristics derived from dynamic analysis.

An incorrect step, process, or data definition in a
computer program [IEEE90]. unit

A software element that can be treated meaning-
oracle fully as a whole.

A mechanized procedure that decides whether a
given input-output pair is acceptable. verification

The process of determining, for a system or
software characteristic component, whether the products of a given de-

An inherent, possibly accidental, trait, quality, or velopment phase satisfy the conditions imposed
property of software [IEEE87]. at the start of that phase. (Adapted from

[IEEE90.)
software feature

A software characteristic specified or implied by
requirements documentation [IEEE971.

SEI-CM-9-2.0 19

Uni Analysis and Testing

Figure: Software Verification Model

Intendedto specify I

Requirements Software

Inferred to be Inferred
representable by to possess

T' I'
Softwar~e] Software

Features "I Intended to Characteristics

demonstrate

20 SEI-CM-9-2.0

Unit Analysis and Testing

Teaching Considerations

Textbooks
Undergraduate Course on Verification Tech-

There has been an explosion of books on the sub- niques. A course covering proof of correcmess, re-
jects of analysis and testing, only a few of which view techniques, and analysis and testing provides a
will be mentioned here. [Myers79] is dated but pro- springboard for understanding the complicated is-
vides a good overview of structural coverage and sues of verification. Suggested coverage:
some specification-based testing. It can still serve * Theory (1.5)
well as a supplementary text in an introductory soft- e Program Views and Related Analyses (4.5)
ware engineering course. [BeizergO] is eclectic, con-
taining more testing techniques than any other refer- e Specification-Based Testing (3.0)
ence. The text is written in a captivating style and 9 Implementation-Based Testing (4.5)
makes frequent appeals to the experiences of actual , Error-Based Testing Testing (3.0)
projects. [Howden87] is the first text to approach
analysis and testing within a unified framework. It * Managerial Aspects (1.5)
contains all the necessary theoretical and practical Total: 18 hours
background, and could be used as a text for a grad-
uate seminar. [Ould861 succinctly places unit anal- Graduate Seminar on Analysis and Testing. As
ysis and testing in its context within the overall veri- indicated in Suggested Reading Lists, there is a
fication effort. wealth of material to support a graduate seminar in

To gain a full appreciation of the important issues, testing. The entire outline of this module can be
each of these texts must be supplemented with read- covered, with additional topics included as deemed
ings from the current literature. Suggested Reading appropriate. The suggestions given below focus on
Lists (page 22) contains a table categorizing entries how this material can be taught in a seminar format.
in the annotated bibliography according to their po- The instructor delivers an introductory lecture in
tential use. each of the major topic areas. Lectures should be

based on references in the "essential" category
(column I of the table). A subset of papers from the
"recommended" list (column 2) is selected to be read

Suggested Schedules by all students; one student should act as presenter
for each paper. For this approach to succeed, papers

The following are suggestions for using the material and presenters must be selected well in advance, and
in this module in various classroom contexts. Num- both presenters and participants must be prepared.
bers in parentheses represent suggested lecture hours To ensure this advance preparation, the instructor
to be allocated to each topic. should:

e Approve all paper selections.
One-Term Undergraduate Introduction to Soft- 9 Meet with each presenter at least two weeks in
ware Engineering. The large quantity of material advance of the presentation to answer
to be covered in this course makes it difficult to deal questions, determine presentation format, and
with any topic in depth. The following minimum together write a set of exercises for the other
coverage of unit analysis and testing issues is sug- students.
gested: o Distribute the assigned reading as soon as

e Theory (0.5) possible and the set of exercises at least one
* Program Views and Related Analyses (1.5) week in advance of the presentation.

"* Specification-Based, Implementation-Based, 9 Be prepared to assist each student at his or her
and Error-Based Testing (1.5) presentation, if necessary.

"* Managerial Aspects (1.5) This approach requires discipline on everyone's part.

Total: 5.0 hours

SEI-CM-9-2.0 21

Unit Analysis and Testing

Broad coverage of material is aided by requiring Exercises
each student to write a term paper in one of the areas
related to the course. Readings listed in the "es- It is not sufficient merely to study techniques-they
sential" and "recommended" columns provide must be applied to software and evaluated. For-
breadth, while those categorized as "detailed" or tunately there is no lack of software to be verified!
"expert" provide depth. The traditional projected-oriented software engineer-

Suggested coverage: ing course clearly should have a testing component.
"* Background (1.0) If a testing seminar is held concurrently with such a

course, the students taking the seminar can act as an"* Program Views and Related Analyses independent test organization, as tool builders, as
"* Textual and syntactic views (1.0) consultants, etc., for the software engineering class.
"* Control flow view (2.0) Alternatively, programs can be obtained from anoth-

"* Data flow view (4.0) er class or from industry for sustained testing.

"* Data state view (3.0) In a testing seminar, the complementary benefits of

"* Functional view (2.0) specification-based and implementation-based test-
ing can be illustrated by dividing the seminar partici-

"* Specification-Based Testing pants into two groups. Have each group produce
"o Testing independent of the specification a specification and fault-filled program. The

technique (1.0) specification-based group receives the specification
"• Testing dependent on the specification and object code from the implementation-based

testingqdep oe s o group, which, in turn, receives only the source code
technique (3.0) from the specification-based group. After testing is

"* Implementation-Based Testing complete, the groups compare results. Roles of the
"* Structure-based testing (2.0) two groups can then be reversed.
"* Infection-based testing (3.0) Testing tools are prime candidates for projects. Ru-

"* Propagation-based testing (3.0) dimentary test beds, data flow analyzers, and code
instrumenters can be implemented in one term."Tools developed during one term can serve both as

"* Error-based testing (3.0) test tools and test objects for the next.
"* Fault-based testing (3.0)
"* Probable correctness (1.0)

"* Hybrid Testing Techniques (3.0)
"* Evaluation of Unit Analysis and Testing Suggested Reading Lists

"* Theoretical (2.0) The following lists categorize items in the bibliog-
"* Empirical (2.0) raphy by' applicability. "Essential" reading is com-

"* Managerial Aspects of Unit Analysis and posed of references that provide appropriate entry
Testing points into the literature on topics treated in the

* Selecting techniques (1.0) module. It is not necessary for the instructor to read
every one of these references, but time will be well

"* Configuration items (1.0) spent reading those addressing topics that will ac-
"* Test beds (1.0) tually be taught. Many items in this category are

accessible to students as well. "Recommended"
reading provides additional background, building on
the groundwork laid by reading from the essential
list. Readings in the "Detailed" list are narrower in
scope and generally require background reading
from the first two categories. These papers can
serve as the basis for class projects. "Expert" read-
ing requires background in areas of mathematics
such as computability theory. statistics, or algorithm
analysis. Most of the papers in this category are the-
oretical.

22 SEI-CM-9-2.0

Unit Analysis and Testing

Classification of References

Essential Recommended Detailed Expert

Carver9l Basili87 Bazzichi82 Budd8O
DeMiiio78a Beizer9O Ciarke76 Budd82
Duran84 Berztiss88 DeMiIlo7fb Chemiavsky87
Fosdick76 Brykczynski89 DeMillo88 Davis88
Gerhar176 Clarke82 Duncan8l Duran8l
Goodenough75 Clarke89 Duran8O Gouriay83
Hamlet87 Foster8O FrankI88 Hamlet77a
Hantler76 Gannon8l Hecht77 Howden78c
Howden76 Hamnlet77 Howden77 Muchnick8l
Howden8Oa HamnIet88 Howden78b Rowland8l
Howden86 Haml~et9O Howden89 Weiss88
IEEE83 Hayes-Roth83 Howden9O Weyuker84
IEEE87 Howden75 JaloteB9 ZeiI89
IEEE90 Howden78a Kore[88b
Laski83 HowdenBOb MoreII87
Mills75 Howden82 MoreIl88
0u~d86 Howden87 Ntafos88
Rapps85 Huang75 Off utt89
Richardson85 Jachner84 Osterweil76
Voas9l Korel87 Probert82
Weiser84 KoreI88a Richardson89
Weyuker8O KoreI9Oa Tai8O
Weyuker86 Korel9Ob Weyuker88
Whfte8O Miller8l Woodward88

MiIls83 Young88
More1190 ZeiI88
Myers79 Zweben89
Ntafos84
Perlman9O
Podgurski9O
Powe1182
Redwine83
Richardson88
Tai9l
WeyukerB2
Woodward8O
Youngblut89
ZeiI83

SEI-CM-9-2.O 23

Unft Analysis and Testing

Bibliography

See Suggested Reading Lists (page 22) for additional studies that have compared the effectiveness of soft-
information about how these references can be used ware testing strategies.
in teaching. This paper is important reading for anyone thinking

of conducting an experiment in software testing.
Basl1187 Basic statistical competence is assumed.
Basili, Victor R., and Richard W. Selby. "Com-
paring the Effectiveness of Software Testing Bazzlch182
Strategies." IEEE Trans. Software Eng. SE-13, 12 Bazzichi, Franco, and Ippolito Spadafora. "An Auto-
(Dec. 1987), 1278-1296. matic Generator for Compiler Testing." IEEE Trans.

Abstract: This study applies an experimentation Software Eng. SE-8, 4 (July 1982), 343-353.
methodology to compare three state-of-the-practice Abstract: A new method for testing compilers is
software testing techniques: a) code reading by presented. The compiler is exercised by compatible
stepwise abstraction, b) functional testing using programs, automatically generated by a test gener-
equivalence partitioning and boundary value anal- ator. The generator is driven by a tabular descrip-
ysis, and c) structural testing using 100 percent tion of the source language. This description is in a
statement coverage criteria. The study compares formalism which nicely extends context-free gram-
the strategies in three aspects of software testing: mars in a context-dependent direction, but still
fault detection effectiveness, fault detection cost, retains the structure and readability of BNF. The
and classes of faults detected. Thirty-two profes- generator produces a set of programs which cover
sional programmers and 42 advanced students ap- all grammatical constructions of the source lan-
plied the three techniques to four unit-sized pro- guage, unless user supplied directives instruct
grams in afractional factorial experimental design. otherwise. The programs generated can also be
The major results of this study are the following. 1) used to evaluate the performance of different com-
With the professional programmers, code reading pilers of the same source language.
detected more software faults and had a higher fault
detection rate than did functional or structural test- A significant example from Pascal is presented, and
ing, while functional testing detected more faults experience with the generator is reported.
than did structural testing, but functional and struc- The approach taken here is one similar to that of a
tural testing were not different in fault detection two-level grammar for specifying context sensitiv-
rate. 2) In one advanced student subject group, ity. The problems inherent in specifying semantic
code reading and functional testing were not differ- constraints on a programming language are clearly
ent in faults found, but were both superior to struc- presented. However, the presentation is difficult to
tural testing, while in the other advanced student understand without consulting the cited references.
subject group there was no difference among the
techniques. 3) With the advanced student subjects, This paper or [Duncan81] should be read by the in-
the three techniques were not different in fault de- structor. It is a difficult paper for students, though
tection rate. 4) Number of faults observed, fault its goal should be apparent.
detection rate, and total effort in detection
depended on the type of software tested. 5) Code Beizer9O
reading detected more interface faults than did the Beizer, Boris. Software Testing Techniques, 2nd Ed.
other methods. 6) Functional testing detected more Nei Boris. Software Tein hnqe, 2ndEd
control faults than did the other methods. 7) When New York: Van Nostrand Reinhold, 1990.
asked to estimate the percentage of faults detected, This book offers enough breadth and depth to war-
code readers gave the most accurate estimates rant its use for a variety of academic and training
while functional testers gave the least accurate es- courses. Using a flamboyant style that captures the
timates. reader's attention, Beizer explains a multitude of

"Functional testing" corresponds to specification- testing techniques within a management framework
based testing, as used in this module. This paper of his own devising. The book contains an exten-

should be read as much for its detailed description sive taxonomy of bugs (faults) and related bug

of experimental design as for its conclusions. The counts. The book stresses implementation-based

complexity of designing and conducting an exper- testing, especially path testing.

iment of this magnitude is clearly illustrated. The
references provide a fairly complete list of other

24 SEI-CM-9-2.0

Unit Analysis and Testing

Berztlss88 ness exists, and whether it can be automatically de-
Berztiss, Alfs, and Mark A. Ardis. Formal Verifi- tected and/or generated. We establish the relation

cation of Programs. Curriculum Module SEI-CM- between these questions and the problem of decid-

20-1.0, Software Engineering Institute, Carnegie ing equivalence of two programs.

Mellon University, Pittsburgh, Pa., Dec. 1988. This paper requires a good background in computa-

Capsule Description: This module introduces for- bility theory. A theoretical analysis of mutation

mal verification of programs. It deals primarily testing is presented in excellent style.

with proofs of sequential programs, but also with This paper is for experts. Students without a course
consistency proofs for data types and deduction of in computability will be lost.
particular behaviors of programs from their specifi-
cations. Two approaches are considered: verifi- Carver91
cation after implementation that a program is con- Carver, Richard H., and Kuo-Chung Tai. "Replay
sistent with its specification, and parallel develop- arverinichar and Pro g Tai. IEplay
ment of a program and its specification. An assess- and Testing for Concurrent Programs." IEEE Soft-
ment offormal verification is provided, ware 8, 2 (March 1991), 66-74.

This is a good starting point for understanding prob-
Brykczynskl89 lems involved in testing concurrent programs. The
Brykczynski, Bill R., and Christine Youngblut. mechanism described by the authors enables suf-
Bibliography of Testing and Evaluation Reference ficient state information of the program to be cap-
Material. IDA Memorandum Report M-496, Insti- tured to allow prior behavior to be repeated for the

tute for Defense Analyses, Alexandria, Va., Aug. purpose of debugging or testing.

1989.

Over 1900 entries with full abstracts are classified Chernlavsky,7
by author and topic. This bibliography is a com-Recur-
panion to [Youngblut89a. sion Theoretic Approach to Program Testing." IEEE

Trans. Software Eng. SE-13, 7 (July 1987), 777-784.

Budd8O Abstract: Inductive inference, the automatic syn-
Budd, Timothy A., Richard A. DeMillo, Richard thesis of programs, bears certain ostensible rela-
J. Lipton, and Frederick G. Sayward. "Theoretical tionships with program testing. For inductive in-

and Empirical Studies on Using Program Mutations ference, one must take a finite sample of the desired

to Test the Functional Correctness of Programs." inputloutput behavior of some program and pro-
duce (synthesize) an equivalent program. In the

Conf. Record 7th Ann. ACM Symp. on Principles of testing paradigm, one seeks a finite sample for a
Prog. Lang. New York: ACM, Jan. 1980, 220-233. function such that any program (in a given set)

This paper presents little-known results on mutation which computes something other than the object

testing, both theoretical and empirical. The theoret- function differs from the object function on the finite

ical section can be safely ignored, except for the sample. In both cases, the finite sample embodies
analysis of decision tables and straight-line Lisp sufficient knowledge to isolate the desired program

programs. The empirical results are more interest- irom all other possibilities. These relationships are
ing sice he prvid isigt itothemutntinvestigated and general recursion theoreticing, since they provide insight into the mutant properties of testable sets offunctions are exposed.

operators used and their success on buggy pro-

grams. [Budd82] presents similar theory from a program-

The theoretical section is useful only for those who ming language theoretic view. [Rowland81] pre-

wish to pursue mutation testing at an expert level. sents related theory for a narrower problem domain.

The empirical section is of some use in demonstrat- This paper requires a strong background in the nota-
ing when mutation testing does and does not work. tions and conventions of computability theory. For

experts only.
Budd82
Budd, Timothy A., and Dana Angluin. "Two No- Clarke76
tions of Correctness and Their Relation to Testing." Clarke, Lori A. "A System to Generate Test Data
Acta Informatica 18, 1 (1982), 31-45. and Symbolically Execute Programs." IEEE Trans.

Abstract: We consider two interpretations for what Software Eng. SE-2, 3 (Sept. 1976), 215-222.

it means for test data to demonstrate correctness. Abstract: This paper describes a system that at-
For each interpretation, we examine under what tempts to generate test data for programs written in
conditions data sufficient to demonstrate correct- ANSI Fortran. Given a path, the system symboli-

SEI-CM-9-2.0 25

Unit Analysis and Testing

cally executes the path and creates a set of con- addressed by domain testing are presented and the
straints on the program's input variables. If the set general applicability of this method is discussed.
of constraints is linear, linear programming tech-
niques are employed to obtain a solution. A solu- This paper recommends the selection of additional
tion to the set of constraints is test data that will test points to narrow the range of domain shifts that
drive execution down the given path. If it can be remain undetected by the domain testing strategy
determined that the set of constraints is inconsis- suggested in [White8O], which is prerequisite read-
tent, then the given path is shown to be non- ing. The paper makes several important suggestions
executable. To increase the chance of detecting for relaxing the restrictions of [White80].
some of the more common programming errors, ar- This is essential reading for the instructor if domain
tificial constraints are temporarily created that sim- testing is to be discussed. Also, it serves as a good
ulate error conditions and then an attempt is made source of thought questions for examinations. It is
to solve each augmented set of constraints. A sym- advanced reading for students.
bolic representation of the program's output vari-
ables in terms of the program's input variables is
also created. The symbolic representation is in a
human readable form that facilitates error detection Clarke, Lori A., Andy Podgurski, Debra J. Richard-
as well as being a possible aid in assertion gener- son, and Steven J. Zeil. "A Formal Evaluation of
ation and automatic program documentation. Data Flow Path Selection Criteria." IEEE Trans.

This paper reports on an early symbolic execution Software Eng. 15, 11 (Nov. 1989), 1318-1332.

system that allows a user to specify interactively the Abstract: A number of path selection criteria have
path to be analyzed. The use of artificial constraints been proposed throughout the years. Unfor-
foreshadows the application of symbolic execution tunately, little work has been done on comparing
in fault-based testing. these criteria. To determine what would be an ef-

A symbolic execution system for a simple language fective path selection criterion for revealing faults

makes an excellent class project. This paper (along in programs, we have undertaken an evaluation of

with [Howden78b] and [Howden77]) provides suf- these criteria. This paper reports on the results of

ficient detail for implementing such a project. our evaluation of path selection criteria based on
data flow relationships. We show how these crite-
ria relate to each other, thereby demonstrating

Clarke82 some of their strengths and weaknesses. In addi-
Clarke, Lori A., Johnette Hassell, and Debra tion, we suggest minor changes to some criteria that
J. Richardson. "A Close Look at Domain Testing." improve their performance. We conclude with a
IEEE Trans. Software Eng. SE-8, 4 (July 1982), discussion of the major limitations of these criteria
380-390. and directions for future research.

Abstract: White and Cohen have proposed the The authors begin with a thorough overview of the
domain testing method, which attempts to uncover three principal data flow approaches to path selec-
errors in a path domain by selecting test data on tion (see [KorelB3], [Ntafos84]. [Rapps85], and
and near the boundary of the path domain. The [Ntafos88]), demonstrating the interrelationships
goal of domain testing is to demonstrate that the among them using a subsumption hierarchy. They
boundary is correct within an acceptable error then suggest modifications to the path selection cri-
bound. Domain testing is intuitively appealing in teria to remedy noted deficiencies. The authors dis-
that it provides a method for satisfying the often cuss issues other than subsumption that must be
suggested guideline that boundary conditions considered in evaluating the criteria: the effect of
should be tested. infeasible paths, the relative cost of the criteria, and

the fault detection capabilities of the criteria.
In addition to proposing the domain testing method,

White and Cohen have developed a test data selec- By collecting the various data flow definitions in
tion strategy, which attempts to satisfy this method. one place, the authors have done everyone a service.
Further, they have described two error measures If any one paper on data flow analysis is to be
for evaluating domain testing strategies. This studied by the instructor, this is probably the appro-
paper takes a close look at their strategy and their priate one. The paper, of course, contains a heavy
proposed error measures. It is shown that in- dose of graph theory.
ordinately large domain errors may remain un-
detected by the White and Cohen strategy. Two Davis88
alternative domain testing strategies, which im- Davis, Martin, and Elaine J. Weyuker. "Metric
prove on the error bound, are then proposed and Space-Based Test-Data Adequacy Criteria." Com-
the complexity of each of the three strategies is pa-e d TetD Adeuac Ci-"Cr
analyzed. Finally, several other issues that must be puter J. 31, 1 (Feb. 1988), 17-24.

26 SEI-CM-9-2.0

Unit Analysis and Testing

Abstract: Since software testing cannot ordinarily DeMIIlo78b
be expected to provide conclusive evidence that a DeMillo, Richard A., and Richard J. Lipton. "A
program is correct, software engineers have had to Probabilistic Remark on Algebraic Program Test-
be satisfied with the vague notion of a set of test ing." Information Processing Letters 7, 4 (June
data being adequate for a given program. In this 1978),n193-195.
paper a theoretical model is provided for the notion
of adequacy. Adequacy criteria are seen as serving This is the first paper to introduce the concept of
to distinguish a given program from a certain class determining statistical confidence in the absence of
of programs. In particular, notions of distance be- faults in programs that compute functions in a spec-
tween programs are studied, and adequacy of a test ified class (e.g., polynomials).
set is taken to mean that the set successfully distin-
guishes the program being tested from all programs The paper is in-depth reading for the instructor.
that are sufficiently near to it, and differ in input-
output behaviour from the given program. Certain DeMillo88
points, called critical, are identified which must oc- DeMillo, Richard A., et al. "An Extended Overview
cur in every adequate test set. Finally, lower of the Mothra Software Testing Environment." Proc.
bounds are obtained on the size of test sets which Second Workshop on Software Testing, Verification,
are minimally adequate, in the sense that they have and Analysis. Washington, D.C.: IEEE Computer
no adequate proper subsets. Society Press, 1988, 142-15 1.

The concept of the distance between two programs
is defined in terms of transformations needed to Abstract: Mothra is a software testing environment
convert one program into the other. The adequacy that supports mutation-based testing of software
discussed is with respect to a finite neighborhood systems. Mothra is interactive; it provides a high-(in the sesed of [Budd82]), limiting the usefulness of bandwidth user interface to make software testingthe results, faster and less painful. Mothra currently runs on avariety of systems under 43BSD UNIX, UNIX Sys-
The authors presume a strong background in pro- tem V, and ULTRIX-32 1.2. This paper begins with
gramming language theory. This paper is appro- a brief introduction to mutation analysis. We then
priate only for those doing research into the theory take the reader on a guided tour of Mothra, empha-
of fault-based testing. sizing how it interacts with the tester. Then we

present [sic] with a short discussion of Mothra's
DeMilIo78a internal design. Next, we discuss some major prob-
DeMillo, Richard A., Richard J. Lipton, and lems with using mutation analysis and discuss pos-

Frederick G. Sayward. "Hints on Test Data Selec- sible solutions. We conclude by presenting a solu-
tion to one of these problem /sic--a new method of

tion: Help for the Practicing Programmer." automatically generating mutation-adequate test
Computer 11, 4 (April 1978), 34-41. Reprinted in data.
[Miller8l].

The authors present an overview of mutation anal-
This paper should win a prize for introducing more ysis and its problems, and they describe the Mothra
catchy new terms than any other--mutation testing, environment, which supports mutation testing. A
competent programmer hypothesis, coupling effect. principal problem is the generation of mutation-
Beware! It is easy to fall under the spell of the adequate test data; the authors discuss heuristics for
latter two terms and assume they are well-defined the generation of requisite test data.
and justified. Beware also of the typographical er-
ror that occurs in several places on page 37, where This article is appropriate for the student interested
'1' is substituted for 'I'. This substitution leads to in mutation operators and the operation of a muta-
the (wrong) impression that mutation testing is per- tion system.
formed conventionally on double mutants. The de-
scription on page 39 is confusing and seems to im- Duncan8l
ply that 14 mutants are equivalent to the original, Duncan, A. G., and J. S. Hutchinson. "Using Attri-
yet four of them are not. [Duran8l] draws exactly buted Grammars to Test Designs and Implementa-
the opposite conclusion based on the random gener- tions." 5th Intl. Conf. on Software Eng. New York:
ation example! IEEE, March 1981, 170-178.

Despite flaws, this paper is an excellent introduction Abstract. We present a methodfor generating test
to mutation testing and is,tuent cases that can be used throughout the entire life
ing for both instructor and student. cycle of a program. This method uses attributed

translation grammars to generate both inputs and
outputs, which can then be used either as is, in or-
der to test the specifications, or in conjunction with

SEI-CM-9-2.0 27

Unit Analysis and Testing

automatic test drivers to test an implementation Abstract: Mills' capture-recapture sampling meth-
against the specifications. od allows the estimation of the number of errors in

a program by randomly inserting known errors and
The grammar can generate test cases either ran- then testing the program for both inserted and in-
domly or systematically. The attributes are used to digenous errors. This correspondence shows how
guide the generation process, thereby avoiding the correct confudence limits and maximum likelihood
generation of many superfluous test cases. The estimates can be obtained from the test results.
grammar itself not only drives the generation of test Both fixed sample size testing and sequential testing
cases but also serves as a concise documentation of are considered.

the test plan.
It is essential that Mills's original article be read

In the paper, we describe the test case generator, fis (see Chat Miss8origia strongsbatreac
show how it works in typical examples, compare it first (see Chapter 9 of [Millsd]). A strong statistics
with related techniques, and discuss how it can be background is needed.
used in conjunction with various testing heuristics. This reading is for experts only.

This is a practical paper on the means of generating
test data based on a BNF grammar. The use of Duran84
"attributes" here is unconventional and is not direct- Duran, Joe W., and Simeon C. Ntafos. "An Evalu-
ly related to attribute grammars. ation of Random Testing." IEEE Trans. Software

This paper or [Bazzichi82] should be read by the Eng. SE-JO, 4 (July 1984), 438-444.
instructor. It can be useful for in-depth study by the Abstract: Random testing of programs has usually
student. (but not always) been viewed as a worst case of

program testing. Testing strategies that take into
Duran8O account the program structure are generally
Duran, Joe W., and John J. Wiorkowski. "Quanti- preferred. Path testing is an often proposed ideal
fying Software Validity by Sampling." IEEE Trans. for structural testing. Path testing is treated here
on Reliability R-29, 2 (June 1980), 141-144. as an instance of partition testing, where by par-

tition testing is meant any testing scheme which
Abstract: The point of all validation techniques is forces execution of at least one test case from each
to raise assurance about the program under study, subset of a partition of the input domain. Simula-
but no current methods can be realistically thought tion results are presented which suggest that ran-
to give 100% assurance that a validated program dom testing may often be more cost effective than
will perform correctly. There are currently no use- partition testing schemes. Also, results of actual
ful ways for quantifying how 'well-validated' a pro- random testing experiments are presented which
gram is. One measure of program correctness is confirm the viability of random testing as a useful
the proportion of elements in the program's input validation tool.
domain for which it fails to execute correctly, since This paper challenges many ideas about program
the proportion is zero iff the program is correct. testing, especially the notion that random testing is
This proportion can be estimated statistically from of no value. Experiments were conducted to vali-
the results of program tests and from prior subjec- date an error model, and the structural coverage ac-
tive assessments of the program's correctness.
Three examples are presented of methods for deter- complished by such testing is reported. Knowledge
mining s-confidence bounds on the failure propor-
tion. It is shown that there are reasonable con- This is essential reading for the instructor. It is
ditions (for programs with a finite number of paths) challenging for the student, but it should be read.
for which ensuring the testing of all paths does not
give better assurance of program correctness. Fosdlck76

The authors are interested in program testing, par- Fosdick, Lloyd D., and Leon J. Osterweil. "Data
ticularly in quantifying how well a program has Flow Analysis in Software Reliability." ACM Com-
been tested. Both random testing and path testing puting Surveys 8, 3 (Sept. 1976), 305-330.
are considered. A strong statistical background is
presumed. Abstract: The ways that the methods of data flow

analysis can be applied to improve software
This is expert reading for the instructor. reliability are described. There is also a review of

the basic terminology from graph theory and from
Duran8l data flow analysis in global program optimization.
Duran, Joe W., and John J. Wiorkowski. "Capture- The notation of regular expressions is used to de-
Recapture Sampling for Estimating Software Error scribe actions on data for sets of paths. These ex-

Content." IEEE Trans. Software Eng. SE-7, 1 (Jan. pressions provide the basis of a classification

1981), 147-148. scheme for data flow which represents patterns of

28 SEI-CM-9-2.0

Unit Analysis and Testing

data flow along paths within subprograms and criteria to apply to programs written in a large sub-
along paths which cross subprogram boundaries. set of Pascal. We then define a family of adequacy
Fast algorithms, originally introduced for global criteria called feasible data flow testing criteria,
optimization, are described and it is shown how which are derived from the data flow testing crite-
they can be used to implement the classification ria. The feasible data flow testing criteria circum-
scheme. It is then shown how these same algo- vent the problem of nonapplicability of the data
rithms can also be used to detect the presence of flow testing criteria by requiring the test data to
data flow anomalies which are symptomatic of pro- exercise only those definition-use associations
gramming errors. Finally, some characteristics of which are executable. We show that there are sig-
and experience with DAVE, a data flow analysis nificant differences between the relationships
system embodying some of these ideas, are de- among the data flow testing criteria and the
scribed. relationships among the feasible data flow testing

criteria.
This article is a most readable and thorough intro-

duction to data flow analysis. Read this first and We also discuss a generalized notion of the ex-
compare with [Jachner84]. ecutability of a path through a program unit. A

script of a testing session using our data flow test-
This is essential reading for both instructor and stu- ing tool, ASSET, is included in the Appendix.
dent.

The emphasis in this paper is on the term "fea-
Foster80 sible." [Clarke89] points out that this shift in con-

cern does not entirely resolve undecidable issues. ItFoster, Kenneth A. "Error Sensitive Test Cases is crucial to read [Rapps85] before reading this
Analysis (ESTCA)." IEEE Trans. Software Eng. paper, and perhaps [Clarke89] as well.
SE-6, 3 (May 1980), 258-264. This paper requires significant background in data

Abstract: A hardware failure analysis technique flow testing.
adapted to software yielded three rules for gener-
ating test cases sensitive to code errors. These Gannon8l
rules, and a procedure for generating these cases,
are given with examples. Areas for further study Gannon, John, Paul R. McMullin, and Richard
are recommended. G. Hamlet. "Data-Absraction, Implementation,

Specification, and Testing." ACM Trans. Prog.
A set of error-sensitive test case analysis rules are Lang. and Syst. 3, 3 (July 1981), 211-223.
given for producing inputs that are "error-
sensitive." The rules are ad hoc, and no theoretical Abstract: A compiler-based system DAISTS that
justification is given for them. Results of this paper combines a data-abstraction language (derived
are clarified in Software Engineering Notes 10, 1 from the SIMULA class) with specification by al-
(Jan. 1985), 62-67. gebraic axioms is described. The compiler,

presented with two independent syntactic objects in
This paper contains many classical examples and is the axioms and implementing code, compiles a
useful for that reason. It is not essential reading, but "program" that consists of the former as test driver
it raises many questions about why the proposed for the latter. Data points, in the form of expres-
ideas seems to work. sions using the abstract functions and constant

values, are fed to this program to determine if the
Frank188 implementation and axioms agree. Along the way,
Frankl, Phyllis G., and Elaine J. Weyuker. "An Ap- structural testing measures can be applied to both
plicable Family of Data Flow Testing Criteria." code and axioms to evaluate the test data. Although
IEEE Trans. Software Eng. 14, 10 (Oct. 1988), a successful test does not conclusively demonstrate

1483-1498. the consistency of axioms and code, in practice the
tests are seldom successful. revealing errors. The

Abstract: A test data adequacy criterion is a predi- advantage over conventional programming systems
cate which is used to determine whether a program is threefold:
has been tested "enough." An adequacy criterion (1) The presence of the axioms eliminates the need
is applicable if for every program there exists a set for a test oracle; only inputs need be supplied.
of test data for the program which satisfies the cri-
terion. Most test data adequacy criteria based on (2) Testing is automated: a user writes axioms,
path selection fail to satisfy the applicability prop- implementation, and test points; the system writes
erty because, for some programs with unexecutable the test drivers.
paths, no adequate set of test data exists. (3) The results of tests are often surprising and
In this paper. we extend the definitions of the helpful because it is difficult to get away with
previously introduced family of data flow testing "trivial" tests: what is not significant for the code is

SEI-CM-9-2.0 29

Unit Analysis and Testing

liable to be a severe test of the axioms, and vice reliability and validity, but its practical utility
versa, hinges on being able to show when a test is actually

reliable. We explain what makes tests unreliable
The system described here covers diverse aspects of (for example, we show by example why testing all
program testing. It is a specification-dependent program statements, predicates, or paths is not
hybrid approach that takes advantage of the or- usually sufficient to insure test reliability), and we
thogonality between implementations and algebraic outline a possible approach to developing reliable
axioms. tests. We also show how the analysis required to
This paper is recommended reading for the instruc- define reliable tests can help in checking a
tor. With some background in algebraic specifi- program's design and specifications as well as in
cation, students can readily comprehend the system. preventing and detecting implementation errors.

Despite the flaws indicated in [Weyuker80], this
Gerhart76 paper remains a classic. It is essential reading for
Gerhart, Susan L., and Lawrence Yelowitz. "Obser- the instructor. Students find it very difficult; do not
vations of Fallibility in Applications of Modem Pro- use it as an introduction to testing!
gramming Methodologies." IEEE Trans. Software
Eng. SE-2, 3 (SepL 1976), 195-207. Gourlay83

Abstract: Errors, inconsistencies, or confusing Gourlay, John S. "A Mathematical Framework for
points are noted in a variety of published algo- the Investigation of Testing." IEEE Trans. Software
rithms, many of which are being used as examples Eng. SE-9, 6 (Nov. 1983), 686-709.
in formulating or teaching principles of such Abstract: Testing has long been in need of math-
modern programming methodologies as formal ematical underpinnings to explain its value as well
specification, systematic construction, and correct- as its limitations. This paper develops and applies
ness proving. Common properties of these points of a mathematical framework that 1) unifies previous
contention are abstracted. These properties are work on the subject, 2) provides a mechanism for
then used to pinpoint possible causes of the errors comparing the power of methods of testing pro-
and to formulate general guidelines which might grams based on the degree to which the methods
help to avoid further errors. The common charac- approximate program verification, and 3) provides
teristic of mathematical rigor and reasoning in a reasonable and useful interpretation of the notion
these examples is noted, leading to some discussion that successful tests increase one's confidence in
about fallibility in mathematics, and its relationship the program's correctness.
to fallibility in these programming methodologies.
The overriding goal is to cast a more realistic per- Applications of the framework include confirmation
spective on the methodologies, particularly con- of a number of common assumptions about prac-
structive recommendations for their improvement. tical testing methods. Among the assumptions con-

firmed is the need for generating tests from specifi-
This paper is a masterpiece of analysis of how er- cations as well as programs. On the other hand, a
rors occur in the life cycle. Though the authors careful formal analysis shows that the "competent
"nit-pick" in places, they succeed in convincing the programmer hypothesis" does not suffice to ensure
most adamant skeptic of the need for dynamic test- the claimed high reliability of mutation testing.
ing of computer programs. The paper is best under- Hardware testing is shown tofit into the framework
stood after some formal specifications and proofs of as well, and a brief consideration of it shows how
correcmness are attempted. the practical differences between it and software

This paper is essential reading for both instructor testing arise.

and student. This paper is expert reading.

Goodenough75 Hamlet77a
Goodenough, John B., and Susan L. Gerhart. Hamlet Richard G. "Testing Programs with Finite
"Toward a Theory of Test Data Selection." IEEE Sets of Data." Computer J. 20, 3 (Aug. 1977),
Trans. Software Eng. SE-I, 2 (June 1975), 156-173. 232-237.
Reprinted in [Miller8l]. Abstract: The techniques of compiler optimization

Abstract: This paper examines the theoretical and can be applied to aid a programmer in writing a
practical role of testing in software development, program which cannot be improved by these tech-
We prove a fundamental theorem showing that niques. A finite, representative set of test data can
properly structured tests are capable of demonstrat- be useful in this process. This paper presents the
ing the absence of errors in a program. The theoretical basis for the (nonconstructive) existence
theorem's proof hinges on our definition of test of test sets which serves as maximally effective

30 SEI-CM-9-2.0

Unit Analysis and Testing

stand-ins for an unlimited number of input pos- Hamlet87
sibilities. It is argued that although the time re- Hamlet, Richard G. "Probable Correctness Theory."
quired by a compiler to fully exercise a program on Information Processing Letters 25, 1 (April 1987),
a set of data may be large, the corresponding im- 17-25.
provement in the reliability of the program may also
be large if the set meets the given theoretical re- Abstract: A theory of 'probable correctness' is pro-
quirements. posed to assess the reliability of software through

As a theoretical companion to [Hamlet77b], this testing. Current research in testing is not adequate
paper explores the notion of assessing test data ade- for this assessment. Most testing methods are in-puacyviar eplogres mhe tionofassesn The t dartil aes tended for debugging, to find failures and connect
quacy via program mutations. The article reures them to program faults for repair. When these
some background in computability, espcially in re- methods no longer expose errors, no analysis has
duction proofs involving the halting problem. been done to find the confidence that may be placed
The paper could be used as an introduction to corn- in the software. (Preliminary results here are that
putability for students with limited background; all this confidence should be low.) Other work applies
its theorems are relevant to issues involved in pro- conventional decision theory to inputs as samples of
gram testing. a program's use. The application is suspect be-

cause the necessary independence and distribution

Hamlet77b assumptions may be violated; in any case, the
results are intuitively incorrect. The proposed the-

Hamlet, Richard G. "Testing Programs with the Aid ory relies on a uniform distribution of test samples,
of a Compiler." IEEE Trans. Software Eng. SE-3, 4 but relates these to textually occurring faults.
(July 1977), 279-290. Preliminary results include an analysis of partition

Abstract: If finite input-output specifcations are testing, and suggestions for textual sampling. It is

added to the syntax of programs, these specifica- crucial that any such confidence theory be plau-

tions can be verified at compile tune. Programs sible, so the foundations of program sampling aretion ca be eriiedat cmpie tme. rogamsexamined in detail.
which carry adequate tests with them in this way
should be resistant to maintenance errors. If the This paper lays the foundation for a new area of
specifications are independent of program details investigation in program testing. Probable correct-
they are easy to give, and unlikely to contain errors ness theory estimates the probability that a program
in common with the program. Furthermore, certain has no faults. (Reliability theory, on the other hand,
finite specifications are maximal in that they ex- tries to bound the probability that a program will
ercise the control and expression structure of a pro- fail.) This theory provides a means of computing
gram as well as any tests can. bounds on the trustworthiness of software. The the-

A testing system based on a compiler is described, ory is improved in [Hamletg0].
in which compiled code is utilized under interactive Understanding the probability model developed
control, but "semantic" errors are reported in the here requires a significant investment on the part of
style of conventional syntax errors. The implemen- the reader. It explores different sample spaces in
tation is entirely in the high-level language on which faults may lie.
which the system is based, using some novel ideas
for improving documentation without sacrificing ef- This paper is essential reading for the instructor
ficiency. who wants to discuss the statistical confidence that

can be associated with a successful test.
This paper provides an excellent description of a
system that anticipated many of the fault-based Hamlet
methods of program testing practice and theory. It
represents the first fault-based system using pro- Hamlet, Richard G. "Special Section on Software
gram mutation in a context that determines test data Testing." Comm. ACM 31, 6 (June 1988), 662-667.
adequacy by demonstrating that no simpler pro- Hamlet provides an overview of three papers on
grams can be substituted for the original and still testing. He discusses difficulties encountered in try-
pass the test. ing to infer statistical confidence based upon test

The paper is easy to understand and motivates dis- results.
cussion of mutation testing and test data adequacy.
It is recommended reading for the instructor; for the Hamletg0
student, it provides an interesting comparison of Hamlet, Richard G., and Ross Taylor. "Partition
tradeoffs among mutation methods. Testing Does Not Inspire Confidence." IEEE Trans.

Software Eng. 16, 12 (Dec. 1990), 1402-1411.

Abstract: Partition testing, in which a program's

SEI-CM-9-2.0 31

Unit Analysis and Testing

input domain is divided according to some rule and However, for most programs, no fixed bound on the
tests conducted within the subdomains, enjoys a number of times each loop is executed exists and the
good reputation. However, comparison between corresponding symbolic execution trees are infinite.
testing that observes subdomain boundaries and In order to prove the correctness of such programs,
random sampling that ignores the partition gives a more general assertion structure must be pro-
the counterintuitive result that partitioning is of lit- vided. The symbolic execution tree of such pro-
tIe value. In this paper we improve the negative grams must be traversed inductively rather than ex-
results published about partition testing, and try to plicitly. This leads naturally to the use of addi-
reconcile them with its intuitive value. Theoretical tional assertions which are called "inductive
models allow us to study partition testing in the ab- assertions."
stract, and to describe the circumstances under This highly readable article provides a gentle intro-
which it should perform well at failure detection. tionhighlyreedamporticle pro gra correct-
Partition testing is shown to be more valuable when duction to three imiortant areas: program correct-
the partitions are narrowly based on expected ness, formal verification, and symbolic execution.
failures and there is a good chance that failures The instructor who needs to learn about the relation-
occur. For gaining confidence from successful ship of symbolic execution to verification should
tests, partition testing as usually practiced has little begin here. Additional references can be found in
value. [Berztiss88]. This is ideal reading for students.

By "confidence," the author means statistical con-
fidence. The paper challenges many long-held Hayes-Roth83
beliefs about the value of partition testing, in partic- Hayes-Roth, Frederick, and Donald Arthur Water-
ular, its value in ensuring overall confidence in the man, eds. Building Expert Systems. Reading,
correct operation of the program. Hamlet reviews Mass.: Addison-Wesley, 1983.
and extends the work of Duran and Ntafos
[Duran84] on random testing on a failure-rate model This book outlines verification activities applicable
of program confidence and presents his own defect- to expert systems.
rate model of probable correctness for assessing
partition testing. Hecht77

This paper requires some background in probability Hecht, Matthew S. Flow Analysis of Computer
and statistics. It may be necessary to read some of Programs. New York: Elsevier North-Holland,
the cited references before fully comprehending the 1977.
material. This is the standard text covering the theory of data

flow analysis as applied to program optimization.Hantler76 Application of data flow analysis to verification is
Hantler, Sidney L., and James C. King. "An Intro- not covered.
duction to Proving the Correctness of Programs."
ACM Computing Surveys 8, 3 (Sept. 1976), 331-353. Howden75
Reprinted in [Miller81]. Howden, William E. "Methodology for the Gener-

Abstract: This paper explains, in an introductory ation of Program Test Data." IEEE Trans. Corn-
fashion, the method of specifying the correct be- puters C-24, 5 (May 1975), 554-560.
havior of a program by the use of inputloutput Abstract: A methodology for generating program
assertions and describes one method for showing test data is described. The methodology is a model
that the program is correct with respect to those of the test data generation process and can be used
assertions. An initial assertion characterizes con- o cheatest ta basic probess d ata gen-
ditions expected to be true upon entry to the pro- to characterize the basic problems of test data gen-
gram and a final assertion characterizes conditions eration. It is well defined and can be used to build
expected to be true upon exit from the program. an automatic test data generation system.
When a program contains no branches, a technique The methodology decomposes a program into a
known as symbolic execution can be used to show finite set of classes of paths in such a way that an
that the truth of the initial assertion upon entry intuitively complete set of test cases would cause the
guarantees the truth of the final assertion upon exit. execution of one path in each class. The test data
More generally, for a program with branches one generation problem is theoretically unsolvable:
can define a symbolic execution tree. If there is an there is no algorithm which, given any class of
upper bound on the number of times each loop in paths, will either generate a test case that causes
such a program may be executed, a proof of cor- some path in that class to be followed or determine
rectness can be given by a simple traversal of the that no such data exist. The methodology attempts
(finite) symbolic execution tree. to generate test data for as many of the classes of

paths as possible. It operates by con, rutting

32 SEI-CM-9-2.0

Unit Analysis and Testing

descriptions of the input data subsets which cause classes of program errors and to other kinds of pro-
the classes of paths to be followed. It transforms gram testing and program analysis tools is also dis-
these descriptions into systems of predicates which cussed. Desirable improvements in DISSECT,
it attempts to solve. whose importance was revealed by the experiments,

This paper contains a nuts-and-bolts presentation of are mentioned.

symbolic execution techniques. This paper provides a detailed look into the

The instructor may find this paper useful, but dated. strengths and weaknesses of a symbolic execution

Students who are not enthusiastic about using struc- system. Several interesting notions are introduced,
tural coverage to generate test data should avoid this such as using two-dimensional output to improveto ve. readability of symbolic output and using a path de-one. scription language. For more detailed information

on the DISSECT system, see [Howden78b].Howden76
Howden, William E. "Reliability of the Path Anal- The paper is necessary only for in-depth under-

ysis Testing Strategy." IEEE Trans. Software Eng. standing of symbolic execution. It iu easily under-
SE-2, 3 (Sept. 1976), 208-215. Reprinted in s bystudents.
[Miller8l]. Howden78a

Abstract: A set of test data Tfor a program P is Howden, William E. "Theoretical and Empirical
reliable if it reveals that P contains an error when- Studies of Program Testing." IEEE Trans. Software
ever P is incorrect. If a set of tests T is reliable and Eng. SE-4, 4 (July 1978), 293-298.
P produces the correct output for each element of T
then P is a correct program. Test data generation Abstract: Two approaches to the study of program
strategies are procedures for generating sets of tess testing are described. One approach is theoretical
data. A testing strategy is reliable for a program P and the other empirical. In the theoretical ap-
if it produces a reliable set of test data for P. It is proach situations are characterized in which it is
proved that an effective testing strategy which is possible to use testing to formally prove the correct-
reliable for all programs cannot be constructed. A ness of programs or the correctness of properties of
description of the path analysis testing strategy is programs. In the empirical approach testing strate-
presented. In the path analysis strategy data are gies reveal the errors in a collection of programs.
generated which cause different paths in a program A summary of the results of two research projects
to be executed. A method for analyzing the which investigated these approaches are presented.
reliability of path testing is introduced. The method The differences between the two approaches are
is used to characterize certain classes of programs discussed and their relative advantages and dis-
and program errors for which the path analysis advantages are compared.
strategy is reliable. Examples of published incor-rect programs are included. This paper is recommended reading for the instruc-

tor who wishes to compare the theoretical approach

This is an excellent paper, which established much with the empirical approach. It is readily under-
of the terminology and influenced much of the work stood by students.
in path testing.

This is essential reading for both the instructor and Howden78b
student. Howden, William E. "DISSECT-A Symbolic Eval-

uation and Program Testing System." IEEE Trans.
Howden77 .7 ftware Eng. SE4, 1 (Jan. 1978), 70-73.
How4i-n, William E. "Symbolic Testing and the Abstract: The basic features of the DISSECT sym-
Df.%'ECT Symbolic Evaluation System." IEEE bolic testing tool are described. Usage procedures
Trans. Software Eng. SE-3, 4 (July 1977), 266-278. are outlined and the special advantages of the tool
Reprinted in [Miller81]. are summarized. Cost estimates for using the tool

Abstract: Symbolic testing and a symbolic evalu- are provided and the results of experiments to de-

ation system called DISSECT are described. The termine its effectiveness are included. The back-
principle features of DISSECT are outlined. The ground and history of the development of the tool

results of two classes of experiments in the use of are outlined. The availability of the tool is de-
resymbolic evalatio n c assesuof rized. i Steverascribed and a listing of reference materials is in-symbolic evaluation are summarized. Several cluded.

classes of program errors are defined and the

reliability of symbolic testing in finding bugs is re- This paper provides detailed information in the use
lated to the classes of errors. The relationship of of a batch-oriented symbolic execution system. For
symbolic evaluation systems like DISSECT to a broader perspective, see [Howden77] and [Much-

nick8l1.

SEI-CM-9-2.0 33

Unit Analysis and Testing

The paper is necessary only for in-depth under- design and on the value spaces over which the func-
standing of symbolic execution. It should be read tions are defined. The basic ideas on the method
with [Clarke760. were developed during the study of a collection of

scientific programs containing errors. The method

Howden78c was the most reliable testing technique for discover-
ing the errors. It was found to be significantly more

Howden, William E. "Algebraic Program Testing." reliable than structural testing. The two techniques
Acta Informatica 10, 1 (1978), 53-66. are compared and their relative advantages and

Abstract: An approach to the study of program limitations are discussed.
testing is introduced in which program testing is By "functional program testing," Howden means
treated as a special kind of equivalence problem. In testing those aspects of a program that have any
this approach, classes of programs P* and associ- form of external specification, including design
ated classes of test sets T* are defined which have documents or even comments within the code.
the property that if two programs P and Q in P*
agree on a set of tests from T*, then P and Q are This paper is a precursor of [Howden86].
computationally equivalent. The properties of a
class P* and the associated class T* can be thought Howden82
of as defining a set of assumptions about a Howden, William E. "Weak Mutation Testing and
hypothetical correct version Q of a program P in Completeness of Test Sets." IEEE Trans. Software
P*. If the assumptions are valid then it is possible E tns of T Sets. IEEE Trn.Sfwr
to prove the correctness of P by testing. The main Eng. SE-8, 4 (July 1982), 371-379.
result of the paper is an equivalence theorem for Abstract: Different approaches to the generation of
classes of programs which carry out sequences of test data are described. Error-based approaches
computations involving the elements of arrays. depend on the definition of classes of commonly oc-

This reading is for expert knowledge. curring program errors. They generate tests which
are specifically designed to determine if particular
classes of errors occur in a program. An error-

Howden80a based method called weak mutation testing is de-
Howden, William E. "Applicability of Software Val- scribed. In this method, tests are constructed which
idation Techniques to Scientific Programs." ACM are guaranteed to force program statements which
7 rans. Prog. Lang. and Syst. 2, 3 (July 1980), 307- contain certain classes of errors to act incorrectly
320. Reprinted in [Miller81]. during the execution of the program over those

tests. The method is systematic, and a tool can be
Abstract: Error analysis involves the examination built to help the user apply the method. It is exten-
of a collection of programs whose errors are sible in the sense that it can be extended to cover
known. Each error is analyzed and validation tech- additional classes of errors. Its relationship to
niques which would discover the error are identi- other software testing methods is discussed. Ex-
fled. The errors that were present in version five of amples are included.
a package of Fortran scientific subroutines and
then later corrected in version six were analyzed. Different approaches to testing involve different
An integrated collection of static and dynamic anal- concepts of the adequacy or completeness of a set
ysis methods would have discovered the error in of tests. A formalism for characterizing the cor-version five before its release. An integrated ap- pleteness of test sets that are generated by error-
proach to validation and the effectiveness of indi- based methods such as weak mutation testing asvidual methods are discussed, well as the test sets generated by other testing meth-ods is introduced. Error-based, functional, and
The author gives an excellent description of what structural testing emphasize different approaches to
errors are discovered by what techniques. the test data generation problem. The formalism

which is introduced in the paper can be used to
This paper is essential reading for the instructor and describ trocm in the ir ca nbese

describe their common basis and their diffeecs
student alike.

Weak mutation testing provides a viable alternativc

Howden80b to its more expensive cousin, mutation testing, and

Howden, William E. "Functional Program Testing." bears close resemblance to the system described in

IEEE Trans. Software Eng. SE-6, 2 (March 1980), [Hamlet77a]. This paper formalizes the notion of
162E16 s. Scompleteness of a test set based on its ability to
162-169. detect local changes to the code. A good corn-

Abstract: An approach to functional testing is de- parison of testing methods is made, using notation

scribed in which the design of a program is viewed introduced in the paper. The paper is more easily

as an integrated collection of functions. The selec- understood if [DeMillo78], [White80], and [Foster80]

tion of test data depends on the functions used in the are read first.

34 SEI-CM-9-2.0

Unit Analysis and Testing

This paper is recommended for the instructor, espe- the function! While such sleight-of-hand may be
cially if error-based or fault-based testing is to be disturbing at first, it is clear that in some cases this
covered in depth. Given sufficient background, stu- procedure is appropriate, as when a section of code
dents should find the paper accessible. It could fits a standard paradigm and is headed by a corn-
form the basis of a class project to develop a weak ment such as "sort list." To understand Howden's
mutation system. development fully, it is necessary to see his

progress through several papers, especially [How-
Howden86 den76], [Howden8Ob], and [Howden82].
Howden, William E. "A Functional Approach to This paper is essential reading for the instructor.
Program Testing and Analysis." IEEE Trans. Soft- The presentation is at such a high level that it will
ware Eng. SE-12, 10 (Oct. 1986), 997-1005. be difficult for an uninitiated student to understand,

even though it is very well written.
Abstract: An integrated approach to testing is de-

scribed which includes both static and dynamic Howden87
analysis methods and which is based on theoretical
results that prove both its effectiveness and efficien- Howden, William E. Functional Program Testing
cy. Programa are viewed as consisting of collec- and Analysis. New York: McGraw-Hill, 1987.
tions of functions that are joined together using This book contains an excellent chapter on theoret-
elementary functional forms or complex functional ical foundations of program testing, including mate-
structures. rial found nowhere else. The model of functional
Functional testing is identified as the input-output testing and analysis presented in the book requires
analysis of functional forms. Classes of faults are detailed internal specifications of behavior, how-
defined for these forms and results presented which ever, which are seldom available. Extensions to the
prove the fault revealing effectiveness of well de- model are seen in [Howden89].
fined sets of tests.
Functional analysis is identified as the analysis of Howden89
the sequences of opera'ors, functions, and data type Howden, William E. "Validating Programs Without
transformations whi'.h occur in functional struc- Specifications." ACM Software Eng. Notes 14, 8
tures. Functional trace analysis involves the ex- (Dec. 1989), 2-9.
amination of the sequences of function calls which
occur in a program path; operator sequence anal- This article does not contain an abstract, but its con-
ysis the examination of the sequences of operators tents are summarized in the following excerpt:
on variables, data structures, and devices; and data In the error based approach to program testing
type transformation analysis the examination of the and analysi', the focus is on errors that a pro-
sequences of transformations on data types. Theo- grammer or designer may make during the
retical results are presented which prove that it is software development process, and on tech-
only necessary to look at interfaces between pairs of niques that can be used to detect their occur-
operators and data type transformations in order todetect the presence of operator or data type se- rence. It is often the case that a program is
eect errors. The results depend on the defini- constructed without any formal, detailed spec-quencing eification. In this case the code itself is the

tion of normal forms for operator and data type only complete specification. This means that
sequencing diagrams. the only way to verify such a program is to

This paper represents the culmination of the devel- ensure that no errors were made by the pro-
opment of Howden's ideas on program testing as a grammer during programming. The term
full-blown theory. It summarizes his book "errors" here means errors that occur due to
[Howden87] and should be consulted before select- human fallibility. This requires that we study
ing the book in a course. By an interesting twist of the ways in which humans make mistakes in
terminology, Howden has managed to incorporate the construction of artifacts, and then build
all of structural testing into functional testing. He methods to detect when they have occurred ...
presumes the availability of external functions that We have used a simple model in which
specify the behavior of components of the program, human errors are classified as being either er-
even those as small as an expression. Thus, con- rors of decomposition or errors of abstraction.
ventional structural issues such as branch testing are ... Flavor analysis is a kind of dynamic type
converted into questions like, "Does this condition checking. It allows the programmer to docu-
compute this (externally defined) function?" Of ment properties of objects that change during
course, the existence of these external functions for the operation of a program, and to check if
every line of code can be questioned, but Howden assumptions about an object's current set of
has a quick reply-you can use the code to generate properties are correct.

SEI-CM-9-2.0 35

Unft Analysis and Testing

This article provides excellent motivation for the conditions to enable achievement of branch cover-
use of flavor analysis in large systems for the detec- age.
tion of decomposition errors. It complements the The paper is very easy to understand and should
work found in [Howdengo]. cause no problems for students. It will introduce

them to predicate calculus notation for expressing
Howden90 path conditions. It is recommended reading for
Howden, William E. "Comments Analysis and Pro- both instructor and students.
gramming Errors." IEEE Trans. Software Eng. 16, 1
(Jan. 1990), 72-81. IEEE83

Abstract: Software validation is treated as the IEEE. IEEE Standard for Software Test Docu-
problem of detecting errors that programmers make mentation, ANSI/IEEE Std 829-1983. New York:
during the software development process. This in- IEEE, 1983.
cludes fault detection, in which the focus is on tech- Test documentation analogous to the documentation
niques for detecting the occurrence of local errors of the traditional waterfall life-cycle development
which result in well defined classes of program
statement faults. It also includes detecting other model is defined and illustrated in this standard.
kinds of errors, such as decomposition errors.
These occur when there is an inconsistency between IEEE87
two parts of a program and are the result of a false IEEE. IEEE Standard for Software Unit Testing,
assumption made in one part of the program about ANSI/IEEE Std 1008-1987. New York: IEEE,
the properties of some other part. The main focus 1987.
of the paper is on a decomposition error analysis
technique called comments analysis. In this tech- The processes and products of unit testing are de-
nique, errors are detected by analyzing special fined and illustrated in this standard.
classes of program comments. Comments analysis
has been applied to a variety of different kinds of IEEE90
systems, including both a data processing program IEEE. IEEE Standard Glossary of Software Engi-
and an avionics real-time program. The use of
comments analysis for sequential and concurrent neering Terminology, ANSI/IEEE Std 610.12-1990.
systems is discussed and the basic features of com- New York: IEEE, 1990.
ments analysis tools are summarized. The relation- This is a revision and re-designation of an earlier
ship of comments analysis to other techniques, such glossary, ANSI/IEEE Std 729-1983). The "Cor-
as event sequence analysis, are discussed, and the rected Edition" is dated Feb. 1991, but it retains
differences between it and earlier work are ex- "1990" in its number.
plained.

Students should not only learn and employ accept-
This paper is not primarily directed to unit testing. able terminology, but they should also learn why
It is included here because it illustrates one practical standardized terminology is importanL Comparing
method of employing error-based knowledge in the definitions here with those that appear in books and
testing process, especially in the context of concur- papers will help them learn both lessons.
rent programming. Related work is found in [How-
den89]. Jachner84

Huang75 Jachner, Jacek, and Vinod K. Agarwal. "Data Flow
Huang7, JAnomaly Detection." IEEE Trans. Software Eng.Huang, J. C. "An Approach to Program Testing." SE-JO, 4 (July 1984), 432-437.

ACM Computing Surveys 8, 3 (Sept. 1975), 113-128.

Reprinted in [Miller8l]. Abstract: The occurrence of a data flow anomaly is
often an indication of the existence of a program-

Abstract: One of the practical methods commonly ming error. The detection of such anomalies can be
used to detect the presence of errors in a computer used for detecting errors and to upgrade software
program is to test it for a set of test cases. The quality. This paper introduces a new, efficient algo-
probability of discovering errors through testing rithm capable of detecting anomalous data flow
can be increased by selecting test cases in such a patterns in a program represented by a graph. The
way that each and every branch in the flowchart algorithm based on static analysis scans the paths
will be traversed at least once during the test. This entering and leaving each node of the graph to
tutorial describes the problems involved and the reveal anomalous data action combinations. An al-
methods that can be used to satisfy the test require- gorithm implementing this type of approach was
ment. proposed by Fosdick and Osterweil 12/. Our ap-

This paper discusses a method for determining path proach presents a general framework which not

36 SEI-CM-9-2.0

Unit Analysis and Testing

only fills a gap in the previous algorithm, but also Kore187
provides time and space improvements. Korel, Bogdan. "The Program Dependence Graph in

This paper corrects a problem in [Fosdick76] and Static Program Testing." Information Processing
cannot be understood without having read that arti- Letters 24, 2 (Jan. 1987), 103-108.
cle. Abstract: In this paper, new techniques for static

Instructors who use [Fosdick76] must also read this program testing are presented. The techniques are
paper. The paper opens up the possibility of a based on the program dependence graph, which
meta-discussion about the need to analyze papers models the structure of the program in terms of data
critically. The shock effect on students of the and control dependences between program instruc-
reliability of published papers is not to be under- tions. First, a new approach for redundant code
estimated. Other illustrations of the need for critical detection is proposed. The main idea is based on
analysis can be found in [Gerhart76], [Weyuker8O], the observation that each program instruction
and [Zweben89]. should have influence on the output of the program.

otherwise it is considered redundant. Second. an

Jalote89 input output relationship analysis, which reflecti
the influence of specific input data on specific out-

Jalote, Pankaj. "Testing the Completeness of Speci- put data of the program, is proposed. It is shown
fications." IEEE Trans. Software Eng. 15, 5 (May that the presented techniques can increase the num.-
1989), 526-31. ber of detectable errors as compared with error dr-

Abstract: Specifications are means to define for- tection through dataflow analysis alone.

mally the behavior of a system or a system compo- This paper is crucial to understanding the work of
nent. Completeness is a desirable property for Korel and others who seek to use data flow infor-
specifications. In this paper, we describe a system mation in novel ways. The paper is self-contained
that tests for the completeness of axiomatic specifi- and is essential reading for anyone studying mcth-
cations of abstract data types. For testing, the sys- ods of representing data flow information.
tem generates a set of test cases and an implemen-
tation of the data type from the specifications. The Kore188a
generated implementation is such that if the specift-
cations are not complete, the implementation is not Korel, Bogdan, and Janusz Laski. "Dynamic Pr)-
complete, and the behavior of all of the sequences gram Slicing." Information Processing Letters 29. 3
of valid operations on the data type is not defined. (Oct. 1988), 155-163.
This implementation is tested with the generated Abstract: A dynamic program slice is an ex-
test cases to detect the incompleteness of specifi- ecutable subset of the original program that pro-
cations. The system is implemented on a VAX sys- duces the same computations on a subset of selected
tem running Unix. variables and inputs. It differs from the static slice

The paper illustrates fault-based testing of a specf- (Weiser, 1982, 1984) in that it is entirely defined on
cation. The fault under consideration is one of the basis of a computation. The two main advan-
missing axioms. A brief overview of algebraic tages are the following: Arrays and dynamic data
specifications is given. The paper defines an ADT structures can be handled more precisely and the
to be sufficiently complete if and only if, for every slice can be significantly reduced, leading to a finer
possible instance of the abstract type, the result of localization of the fault. The approach is being
all behavior operations is defined by the specifi- investigated as a possible extension of the debug-
cations. The paper considers only incompleteness ging capabilities of STAD, a recently developed

caused by missing axioms. It presents heuristics System for Testing and Debugging (Korel and

based on test data generated from the syntactic por- Laski, 1987; Laski, 1987).
tion of the specification for discovering that omis- This paper should be read before [Korei90b].
sion. The paper cites further references to the im-
plementation of the system described. Kore188b

The paper raises some interesting problems, such as Korel, Bogdan, and Janusz Laski. "STAD-A Sys-
whether heuristics exist for discovering other ter For Testing and Debugging: User Perspective."
classt.s of faults in algebraic specifications, and tror Seond and Debugg ing , Uerive.
whether testing categorically proves the absence of Proc. Second Workshop on Software Testing, Verifi-those faults, cation, and Analysis. Washington, D.C.: IEEE

thos fauts.Computer Society Press, 1988, 13-20.
This paper is appropriate for students only after they
have been exposed to the principles of algebraic Abstract: A recently developed, experimental, inte-
specifications. It can be used to illustrate how fault- grated System for Testing and Debugging is

based testing techniques can be applied to testing presented. Its testing part supports three data flow

specifications.

SEI-CM-9-2.0 37

Unit Analysis and Testing

coverage criteria. The debugging part guides the Korel90b
programmer in the localization of faults by gener- Korel, Bogdan, and Janusz Laski. "Dynamic Slicing
ating and interactively verifying hypotheses about of Computer Programs." J. Syst. and Software 13, 3
their location. (Nov. 1990), 187-195.

The three data flow coverage criteria referred to are Abstract: Program slicing is a useful tool in pro-
U- and L-context testing and chain testing. The tool gram debugging.... Dynamic slicing introduced in
reports coverage in terms of these three criteria. this paper differs from the original static slicing in

This paper extends the concepts found in fLaski83]. that it is defined on the basis of a computation. A
It would serve well as an example of program in- dynamic program slice is an executable part of the
strumentation. original program that preserves part of the

program's behavior for a specric input with respect

Korel9Oa to a subset of selected variables, rather than for all
possible computations. As a result, the size of a

Korel, Bogdan. "Automated Software Test Data slice can be significantly reduced. Moreover, the
Generation." IEEE Trans. Software Eng. 16, 8 (Aug. approach allows us to treat array elements and
1990), 870-879. fields in dynamic records as individual variables.

Abstract: Test data generation in program testing This leads to afurther reduc.,-n of the slice size.
is the process of identifying a set of test data which The application of dynamic analysis to program
satisfies given testing criterion. Most of the existing slicing is clearly advantageous for debugging and
test data generators ... use symbolic evaluation to for data flow testing.
derive test data. However, in practical programs
this technique frequently requires complex al- The paper is accessible to students only after read-
gebraic manipulations, especially in the presence of ing [Kore188a] and [Weiser84].
arrays. In this paper we present an alternative ap-
proach of test data generation which is based on LaskI83
actual execution of the program under test, function Laski, Janusz W., and Bogdan Korel. "A Data Flow
minimization methods, and dynamic data flow anal- Oriented Program Testing Strategy." IEEE Trans.
ysis. Test data are developed for the program using Software Eng. SE-9, 3 (May 1983), 347-354.
actual values of input variables. When the program
is executed, the program execution flow is Abstract: Some properties of a program data flow
monitored. If during program execution an unde- can be used to guide program testing. The
sirable execution flow is observed (e.g., the presented approach aims to exercise use-definition
"actual" path does not correspond to the selected chains that appear in a program. Two such data
control path) then function minimization search al- oriented testing strategies are proposed; the first
gorithms are used to automatically locate the values involves checking liveness of every definition of a
of input variables for which the selected path is variable at the point(s) of its possible use; the sec-
traversed. In addition, dynamic data flow analysis ond deals with liveness of vectors of variables
is used to determine those input variables respon- treated as arguments to an instruction or program
sible for the undesirable program behavior, leading block. Reliability of these strategies is discussed
to significant speedup of the search process. The with respect to a program containing an error.
approach to generating test data is then extended topprograms with dyneramict data istr xtuesnde a This paper provides a transition from the use of dataprograms with dynamic data structures, and a

search method based on dynamic dataflow analysis flow to detect anomalies in programs to its use as a
and backtracking is presented. In the approach de- method for selecting and evaluating test data.
scribed in this paper, values of array indexes and The paper should be read by the instructor and is
pointers are known at each step of program execu- accessible to students. The instructor should em-
tion, and this approach exploits this information to phasize the difference between using a criterion for
overcome difficulties of array and pointer handling; evaluation and using it for generation.
as a result, the effectiveness of test data generation
can be significantly improved. Miller8l

This is an excellent paper, which presents an inno- Miller, Edward, and William E. Howden, eds.
vative and complex approach to the problem of test Tutorial: Software Testing & Validation Techniques,
data generation. The paper addresses some of the 2nd Ed. New York: IEEE Computer Society Press,
most complex issues involving arrays and dynamic 1981.
data structures. Appropriate references to the im-
plemented systems are cited. This collection of articles is dated and out-of-print,

A sophisticated background in data structures and but it contains copies of many of the older articles
discussed in this module. A new edition is in prepa-

data flow theory is required to read this paper. ration.

38 SEI-CM-9-2.0

Unit Analysis and Testing

MIlls75 expressions. The output from the system is an ex-
Mills, Harlan D. "The New Math of Computer pression in terms of the input and the symbolic al-
Programming." Comm. ACM 18, 1 (Jan. 1975), ternative. Equating this with the output from the

43-48. original program yields a propagation equation
whose solutions determine those alternatives which

Abstract: Structured programming has proved to are not differentiated by this test.
be an important methodology for systematic pro- This paper contains a gentle introduction to (sym-
gram design and development. Structured pro- bolic) fault-based testing. The coupling effect is
grams are identified as compound function expres- discussed and formally characterized. It is then
sions in the algebra of functions. The algebraic dsusdadfral hrceie.I steproperties of these function expressions permit the shown that for particular classes of faults and pro-propefortiesmufltheseafution eexpaessas perecti ha gram constructs, the probability is small that areformulation (expansion as well as reduction) of adouble fault remains undetected if each of the single
nested subexpression independently of its environ- fault reminated.
ment, thus modeling what is known as stepwise pro- faults is eliminated.
gram refinement as well as program execution. This paper is useful to those interested in theoretical
Finally, structured programming is characterized in analysis of the coupling effect.
terms of the selection and solution of certain
elementary equations defined in the algebra of func- MoreIl188
tions. These solutions can be given in general for-
mulas, each involving a single parameter, which Morell, Larry J. "Theoretical Insights into Fault-
display the entire freedom available in creating cor- Based Testing." Proc. Second Workshop on Soft-
rect structured programs. ware Testing, Verification, and Analysis. Washing-

The functional view of programs is introduced in ton, D.C.: IEEE Computer Society Press, 1988,

this classic paper. The paper is essential reading for 45-62.

the instructor and student alike if the functional Abstract: Testing is fault-based when its goal is to
view is to be given serious consideration. demonstrate the absence of prespecified faults. This

paper presents a framework that characterizes

MNlls83 fault-based testing schemes based on how many
Mills, Harlan D. Software Productivity. Boston: prespecified faults are considered and on the con-
Mittll, Harln, 8. textual information used to deduce the absence of
Little, Brown, 1983. those faults. Established methods of fault-based

This collection of articles on the subject of software testing are placed within this framework. Most
processes was written by Harlan Mills over a period methods either are limited to finite fault classes, or
of years. Mills's seminal article on error seeding is focus on local effects of faults rather than global
reprinted here. effects. A new method of fault-based testing called

symbolic testing is presented by which infinitely
many prespecifted faults can be proven to be absent

Morel187 from a program based upon the global effect the
Morell, Larry J. "A Model for Assessing Code- faults would have if they were present. Cir-
Based Testing Techniques." Proc. Fifth Ann. Pacific cumstances are discussed as to when testing with a
Northwest Software Quality Conf. Portland, Ore.: finite test set is sufficient to prove that infinitely
Lawrence & Craig, 1987, 309-326. many prespecifled faults are not present in a pro-

Abstract: A theory of fault-based program testing gram.

is defined and explained. Testing is fault-based Fault-based testing seeks to demonstrate that a
when it seeks to demonstrate that prescribed faults given program is unique among a neighborhood of
are not in a program. It is assumed here that a programs defined by classes of faults. Fault-based
program can only be incorrect in a limited fashion testing schemes may be classified according to
specified by associating alternate expressions with breadth of the neighborhood (finite or infinite) and
program expressions. Classes of alternate expres- the extent of the propagation (local or global) used
sions can be infinite. Substitution of an alternate to distinguish the programs from other members of
expression for a program expression yields an al- the neighborhood.
ternate program that is potentially correct. The This paper contains proofs of the theorems cited in
goal of fault-based testing is to produce a test set [Morel90] and a useful history of fault-based test-
that differentiates the program from each of its al- ing. After some background reading on symbolicternates,.n.Atrsm akron edn nsmoi

execution, most of the paper should be understand-
A particular form of fault-based testing based on able to the student. The theorems require familiar-
symbolic execution is presented. In symbolic ity with the halting problem of computability the-
testing program expressions are replaced by sym- ory.
bolic alternatives that represent classes of alternate

SEI-CM-9-2.0 39

Unit Analysis and Testing

Morell90 Ntafos84
Morell, Larry J. "A Theory of Fault-Based Testing." Ntafos, Simeon C. "On Required Element Testing."
IEEE Trans. Software Eng. 16, 9 (Aug. 1990), IEEE Trans. Software Eng. SE-JO, 6 (Nov. 1984),
844-857. 795-803.

Abstract: A theory of fault-based testing is defined Abstract: In this paper we introduce two classes of
and explained. Testing is fault-based when it seeks program testing strategies that consist of specifying
to demonstrate that prescribed faults are not in a a set of required elements for the program and then
program. Is is assumed here that a program can covering those elements with appropriate test in-
only be incorrect in a limited fashion specified by puts. In general, a required element has a struc-
associating alternate expressions with program ex- tural and a functional component and is covered by
pressions. Classes of alternate expression can be a test case if the test case causes the features speci-
infinite. Substitution of an alternate expression for fled in the structural component to be executed un-
a program expression yields an alternate program der the conditions specified in the functional com-
that is potentially correct. The goal of fault-based ponent. Data flow analysis is used to specify the
testing is to produce a test set that differentiates the structural component and data flow interactions are
program from each of its alternates, used as a basis for developing the functional com-

A particular form of fault-based testing based on ponent. The strategies are illustrated with examples

symbolic execution is presented. In symbolic t- and some experimental evaluations of their effec-

ing program expressions are replaced by symbolic tiveness are presented.

alternatives that represent classes of alternate ex- The author establishes a general framework for inte-
pressions. The output from the system is an expres- grating structural testing with data flow informa-
sion in terms of the input and the symbolic alter- tion.
native. Equating this with the output from the orig-
inal program yields a propagation equation whose The paper could be useful to the instructor, but it is
solutions determine those alternatives which are not less accessible to the student. It may be helpful to
differentiated by this test. Since an alternative set first read [Rapps85], which is more comprehensive
can be infinite, it is possible that no finite test dif- in its treatment of approaches.
ferentiates the program from all its alternates. Cir-
cumstances are described as to when this is decid- NtafosU8
able. Ntafos, Simeon C. "A Comparison of Some Struc-

This paper extends the work of [Morel188] by includ- tural Testing Strategies." IEEE Trans. Software Eng.
ing analysis of both symbolic faults and symbolic 14, 6 (June 1988), 868-874.
errors. Prerequisite reading in the area of symbolic Abstract: In this paper we compare a number of
execution may be necessary. structural testing strategies in terms of their relative

coverage of the program's structure and also in
Muchnlck8l terms of the number of test cases needed to satisfy
Muchnick, Steven S., and Neil D. Jones, eds. each strategy. We also discuss some of the
Program Flow Analysis: Theory and Applications. deficiencies of such comparisons.
Englewood Cliffs, N.J.: Prentice-Hall, 1981. This paper contains an extended overview of data

This book delves deeply into the subject of data flow testing methods, surveying the main papers inflow analysis and many areas of its application to this area. It also corrects a mistake in an earliertesting, including static analysis tools and symbolic version of Ntafos's k-dr testing strategy. The paperexecution, extends the subsumption hierarchy introduced in[Rapps85] by including TERn = I (see [Wood-
This book is for experts, ward8o]), boundary-interior testing methods, and

k-dr testing (see [Ntafos84]).
Myers79 Because it provides a historical perspective on data
Myers, Glenford J. The Art of Software Testing. flow testing, this paper could be used as the first
New York: John Wiley, 1979. reading in the area of data flow testing, followed by

This book is an often-cited reference on software some of the earlier papers.

testing. Although it is somewhat dated, students
find it helpful and easy to read. Off utt89

Offutt, A. Jefferson. "The Coupling Effect: Fact or
Fiction?" ACM Software Eng. Notes 14, 8 (Dec.
1989), 131-140.

40 SEI-CM-9-2.0

Unit Analysis and Testing

Abstract: Fault-based testing strategies test soft- Ould86
ware by focusing on specific, common types of er- Ould, Martyn A., and Charles Unwin, eds. Testing
rors. The coupling effect states that test data sets in Software Development. Cambridge, England:
that detect simple types of faults are sensitive Cambridge University Press, 1986.
enough to detect more complex types of faults. This
paper describes empirical investigations into the This excellent monograph focuses on four views of
coupling effect over a specific domain of software testing: the manager's, the user's, the designer's,
faults. All the results from the investigation support and the programmer's. All levels of testing
the validity of the coupling effect. The major con- (acceptance, system, integration, and unit) are dis-
clusion from this investigation is that by explicitly cussed.
testing for simple faults, we are also implicitly test-
ing for more complicated faults. This gives con- This book is a good supplement for a project-
fidence that fault-based testing is an effective means oriented software engineering course. When sup-
of testing software. plemented with readings from the literature, it pro-

vides a sufficient framework for a course in soft-
The difficulty with the notion of coupling effect is ware testing.
the imprecision of the terms "simple" and "com-
plex." Offuu uses the interpretation of these terms Perlmang0
given by Morell: simple faults are denoted by singlePela9mutants; double faults are denoted by double Perlman, Gary. User Interface Development. Cur-mutats;doule auls ae dnotd b doblericulum Module SEI-CM-17-1.1, Software Engi-
mutants. In no case examined in this study did any
non-equivalent double-order mutant survive two neering Institute, Carnegie Mellon University, Pitts-
sets of mutation-adequate test data. Theoretical burgh, Pa., Jan. 1990.
treatment of the coupling effect may be found in Capsule Description: This module covers the is-
[MorelIB7]. sues, information sources, and methods used in the

This paper is easy to read, but it requires a thorough design, implementation, and evaluation of user
background in mutation testing. Fruitful class dis- interfaces, the parts of software systems designed to
cussion can be generated concerning the experimen- interact with people. User interface design draws
tal design and the validity of the conclusions drawn. on the experiences of designers, current trends in

inputloutput technology, cognitive psychology,

Osterwell76 human factors (ergonomics) research, guidelines
and standards, and on the feedback from evaluating

Osterweil, Leon J., and Lloyd D. Fosdick. "DAVE- working systems. User interface implementation
A Validation Error Detection and Documentation applies modern software development techniques to
System for Fortran Programs." Software-Practice building user interfaces. User interface evaluation
and Experience 6, 4 (OcL-Dec. 1976), 473-486. can be based on empirical evaluation of working
Reprinted in [Miller8l]. systems or on the predictive evaluation of system

Abstract: This paper describes DAVE, a system for design specifications.

analyzing Fortran programs. DAVE is capable of Podgurski9O
detecting the symptoms of a wide variety of errors
in programs, as well as assuring the absence of Podgurski, Andy, and Lori A. Clarke. "A Formal
these errors. In addition, DAVE exposes and docu- Model of Program Dependencies and Its Implica-
ments subtle data relations and flows within pro- tions for Software Testing, Debugging, and Mainte-
grams. The central analytic procedure used is a nance." IEEE Trans. Software Eng. 16, 9 (Sept.
depth first search. DAVE itself is written in 1990), 965-979.
Fortran. Its implementation at the University of
Colorado and some early experience is described. Abstract: A formal, general model of program

dependences is presented and used to evaluate sev-
After an abrupt introduction to data flow anomalies, eral dependence-based software testing, debugging,
the paper gives two algorithms for computing the and maintenance techniques. Two generalizations
input/output classification of a variable. The rela- of control and data flow dependence, called weak
tionship between these algorithms and the detection and strong syntactic dependence. are introduced
of data flow anomalies is not immediately obvious, and related to a concept called semantic depend-
[Fosdick76J should be read first and compared with ence. Semantic dependence models the ability of a
this article. The algorithms here are expressed in an program statement to affect the execution behavior
Algol-like language, making them more palatable of other statements. It is shown, among other
than those in [Fosdick76]. things, that weak syntactic dependence is a neces-

sdetailed reading for the sary but not sufficient condition for semantic de-
The paper could serve asnotaile s itadiffocut pendence and that strong syntactic dependence is a
instructor. The density of notation makes it difficult necessary but not sufficient condition for a re-
for the student.

SEI-CM-9-2.0 41

Unit Analysis and Testing

strictedform of semantic dependence that is finitely The paper should be read by the instructor if in-
demonstrated. These results are then used to sup- strumentation is discussed. A background in graph
port some proposed uses of program dependences, theory and formal grammars is necessary. The
to controvert others, and to suggest new uses. paper is explicit enough to form the basis of a class

This paper is highly recommended for its clear and project

concise definitions in the area of data flow phenom-
ena (dependences). The substantial effort necessary Rapps85
to understand the definitions will prove a useful in- Rapps, Sandra, and Elaine J. Weyuker. "Selecting
vestment when reading other data flow papers. Software Test Data Using Data Flow Information."

This paper could be used to lay the mathematical IEEE Trans. Software Eng. SE-11, 4 (April 1985),

foundation necessary for understanding data flow in 367-375.
programs. Abstract: This paper defines a family of program

test data selection criteria derived from data flow
Powel182 analysis techniques similar to those used in com-
Powell, Patricia B., ed. Software Validation, Verifi- piler optimization. It is argued that currently used
cation, and Testing Technique and Tool Reference path selection criteria, which examine only the con-

Guide, NBS Special Publication 500-93. Washing- trol flow of a program, are inadequate. Our proce-
dure associates with each point in a program atton, D.C.: National Bureau of Standards, 1982. which a variable is defined, those points at which

This book covers most of the testing and analysis the value is used. Several test data selection crite-
techniques covered in this module. The techniques ria, differing in the type and number of these associ-
are compared as to their effectiveness, applicability, ations, are defined and compared.
ease of learning, and costs. The assessments are This paper explores the hierarchical relationships
accurate and succinct. among several data flow testing techniques. The

This is recommended reading for the instructor; it emphasis is on specifying criteria that should be sat-
contains many examples useful in the classroom. isfied by test data, not on generating the data.

The paper should be read by the instructor if data
Probert82 flow is to be treated in depth. The paper is likely to
Probert, Robert L. "Optimal Insertion of Software overwhelm students.
Probes in Well-Delimited Programs." IEEE Trans.
Software Eng. SE-8, 1 (Jan. 1982), 34-42. Redwlne83

Abstract: A standard technique for monitoring soft- Redwine, Samuel T., Jr. "An Engineering Approach
ware testing activities is to instrument the module to Software Test Data Design." IEEE Trans. Soft-
under test with counters or probes before testing ware Erg. SE-9, 2 (March 1983), 191-200.
begins; then, during testing, data generated by Abstract: A systematic approach to test data design
these probes can be used to identify portions of as is presented based on both practical translation of
yet unexercised code. In this paper the effect of the theory and organization of professional lore. The
disciplined use of language features for explicitly approach is organized around five domains and
delimiting control flow constructs is investigated achieving coverage (exercise) of them by the test
with respect to the corresponding ease of software data. The domains are processing functions, input,
instrumentation. In particular, assuming all control output, interaction among functions, and the code
constructs are explicitly delimited, for example, by itself. Checklists are used to generate data for
END IF or equivalent statements, an easily pro- processing functions. Separate checklists have been
grammed method is given for inserting a minimum constructed for eight common business data pro-
number of probes for monitoring statement and cessing functions such as editing, updating, sorting,
branch execution counts without disrupting source and reporting. Checklists or specific concrete
code structure or paragraphing. The use of these directions also exist for input, output, interaction,
probes, called statement probes, is contrasted with and code coverage. Two global heuristics concern-
the use of standard (branch) probes for execution ing all test data are also used. A limited discussion
monitoring. It is observed that the results apply to on documenting test input data, expected results,
well-delimited modules written in a wide variety of and actual results is included.
programming languages, in particular, Ada. Use, applicability, and possible expansions are
The author surveys program instrumentation tech- covered briefly. Introduction of the method has
niques and describes a specific method. The paper similar difficulties to those experienced when intro-
is self-contained, and the method described is ap- ducing any disciplined technique into an area
plicable to most modern languages. where discipline was previously lacking. The ap-

42 SEI-CM-9-2.0

Unit Analysis and Testing

proach is felt to be easily modifiable and usable for This paper is essential reading for both instructor
types of systems other than the traditional business and student.
data processing ones for which it was originally
developed. Richardson88

This is one of the best papers on a systematic means Richardson, Debra J., and Margaret C. Thompson.
of testing data processing software. The value of "The RELAY Model of Error Detection and Its
this paper lies in its pragmatic approach to test data Application." Proc. Second Workshop on Software
selection; there is little theory presented here. Testing, Verification, and Analysis. Washington,

As an example of applied testing in business ap- D.C.: IEEE Computer Society Press, 1988, 223-230.
plications, this paper is a winner. It could serve as a This paper discusses the uses of conditions that
self-assessment test for students who must develop must be satisfied in order for an error (infection) to
an integrated method. be introduced into the state of the program and to

transfer (propagate) to the output.
Rlchardson85 The paper illustrates the complexity encountered
Richardson, Debra J., and Lori A. Clarke. "Partition when considering how infections propagate.
Analysis: A Method Combining Testing and Propagation is broken into two stages: to the initial
Verification." IEEE Trans. Software Eng. SE-11, 12 infection of a portion of the program's data state,
(Dec. 1985), 1477-1490. and through successive execution to output. The

Abstract: The p nanalysis mnethod comares paper proposes a system for studying infection and
a procedure's implementation to its specification, propagation analysis.
both to verify consistency between the two and to This paper should bc read by the instructor after
derive test data. Unlike most verification methods, reading [Voas91].
partition analysis is applicable to a number of dif-
ferent types of specification languages, including Richardson89
both procedural and nonprocedural languages. It
is thus applicable to high-level descriptions as well Richardson, Debra J., Stephanie Leif Aha, and Leon
as to low-level designs. Partition analysis also im- J. Osterweil. "Integrating Testing Techniques
proves upon existing testing criteria. These criteria Through Process Programming." ACM Software
usually consider only the implementation, but par- Eng. Notes 14, 8 (Dec. 1989), 219-228.
tition analysis selects test data that exercise both a Abstract: Integration of multiple testing techniques
procedure's intended behavior (as described in the is required to demonstrate high quality of software.
specifications) and the structure of its implemen- Technique integration has four basic goals:
tation. To accomplish these goals, partition anal- Tece integon has four basicalysis divides or partitions a procedure's domain into reduced development costs, incremental testing ca-
ysisbdmis or partitics al poedueme s domeain io pabilities, extensive error detection, and cost-subdomains in which all elements of each sub- effective application. We are experimenting with
domain are treated uniformly by the speciication the use of process programming as a mechanism for
and processed uniformly by the implementation. integrating testing techniques. Having set out to
This partition divides the procedure domain into develop a process that provides adequate coverage
more manageable units. Information related to and comprehensive fault detection, we proposed
each subdomain is used to guide in the selection of synergistic use of DATA FW testing and RELAY to
test data and to verify consistency between the achieve all four goals. We developed a testing
spectfication and the implementation. Moreover, process program much as we would develop a soft-
the testing and verification processes are designed ware product from requirements through design to
to enhance each other. Initial experimentation has implementation and evaluation. We found process
shown that through the integration of testing and programming to be effective for explicitly integrat-
verification, as well as through the use of infor- ing the techniques and achieving the desired syner-
mation derived from both the implementation and gism. Used in this way, process programming also
the specification, the partition analysis method is 8ism a of the oer problems ingalso
effective for evaluating program reliability. This mitigates many of the other problems that plague
paper describes the partition analysis method and testing in the software developmeni process.
reports the results obtained from an evaluation of The paper requires a grounding in the concept of
its effectiveness. process programming, "programming" the process

This paper contains an excellent presentation of a of software development.

hybrid approach, in which simultaneous coverage of This paper is most appropriate for those interested
both code and specification is attempted. Prereq- in research into the testing process, rather than test-
uisite reading includes domain testing [White80] and ing, per se.
symbolic execution and formal verification [Hant-
ler76].

SEI-CM-9-2.0 43

Uni Analysis and Testing

Rowland81 Ta191
Rowland, John H., and Philip J. IV . "On the Use Tai, Kuo-Chung, Richard H. Carver, and Evelyn
of Transcendentals for Program Testing." J. ACM E. Obaid. "Debugging Concurrent Ada Programs by
28, 1 (Jan. 1981), 181-190. Deterministic Execution." IEEE Trans. Software

Abstract: The element z is called a transLendental Eng. 17, 1 (Jan. 1991), 45-63.

for the class F if functions in F can be uniquely Abstract: An execuaion of a concurrent program P
identified by their values at z. Conditions for the with input X nondeterministicaiiy exercises a se-
existence of transcendentals are discussed for cer- quence of synchronization events, called a syn-
tain classes of polynomials, multinomials, and ra- chronization sequence (or SYN-sequence). Thus,
tional functions. Of particular interest are those multiple executions of P with the same input X may
transcendentals having an exact representation in exercise different SYN-sequences and produce dif-
computer arithmetic. Algorithms are presented for ferent results. When debugging an erroneous ex-
reconstruction of the coefficients of a polynomial ecution of P with input X, it is often necessary to
from its value at a transcendental. The theory is repeat this execution in order to collect more de-
illustrated by application to polynomials, quadratic bugging information. However, there is no guar-
forms, and quadrature formulas. antee that this execution will be repeated by execut-

This paper presents many techniques for demon- ing P with input X. To solve this problem requires

strating that a particular function has been imple- deterministic execution debuging, which is toforce
metdin a computer program. The paper requires a deterministic execution of a concurrent programmerited iacoptrpormThpaereuesaccording to the SYN-sequence ofa previous execu-

a good background in functional analysis to grasp tion of this program.

all the details. It is very well written, though it has

limited application. In this paper, we present a language-based ap-
proach to deterministic execution debugging of con-The paper can prove useful to the instructor, espe- current Ada programs. Our approach is to define

cially in gaining understanding of issues involved in SYN-sequences of a concurrent Ada program in

selecting test data for particular program paths. It is term s of a construct a togreplay
terms of Ada language constructs and to replay

not recommended for students. such SYN-sequences without the need of system-

dependent debugging tools. We first show how to
Tal80 define a SYN-sequence of a concurrent Ada pro-
Tai, Kuo-Chung. "Program Testing Complexity and gram in order to provide sufficient information for
Test Criteria." IEEE Trans. Software Eng. SE-6, 6 deterministic execution. Then we show how to
(Nov. 1980), 531-538. transform a concurrent Ada program P so that the

SYN-sequences of previous executions of P can be
Abstract: This paper explores the testing com- replayed. This transformation adds an Ada task to
plexity of several classes of programs, where the P that controls program execution by synchronizing
testing complexity is measured in terms of the num- with the original tasks in P. We also briefly de-
ber of test data required for demonstrating program scribe the implementation of tools supporting deter-
correctness by testing. It is shown that even for ministic execution of concurrent Ada programs.
very restrictive classes of programs, none of the This paper provides a technical introduction to test-
commonly used test criteria, namely, having every
statement, branch, and path executed at least once, ing concurrent Ada programs using a model thatis nearly sufficient to guarantee absence of errors. captures the sequence of concurrent interaction and

enables it to be replayed. See [Carver9I] for a less
Based on the study of testing complexity, this paper technical introduction and (Weiss88] for a theoret-
proposes two new test criteria, one for testing a ical discussion.
path and the other for testing a program. These
new criteria suggest how to select test data to ob- The paper should be read by those conducting re-
tain confidence in program correctness beyond the search into testing concurrent programs.
requirement of having each statement, branch, or
path tested at least once. Voas9l

This paper analyzes the complexity of achieving Voas, Jeffrey, Larry J. Morell, and Keith Miller.
several structural coverage measures. The inade- "Predicting Where Faults Can Hide from Testing."
quacy of these measures is again shown, along with IEEE Software 8, 2 (March 1991), 41-48.
new criteria for demonstrating correctness for a This paper introduces the concept of sensitivity
limited class of programs. analysis, which estimates the probability that a pro-

The paper should be read by the instructor to gain gram location can hide a fault. The paper is built on
an appreciation of when testing is equivalent to the fault/failure model that is used to structure the
proving correctness. It is in-depth reading for a implementation-based testing section of this mod-
student interested in structural testing.

44 SEI-CM-9-2.0

Unit Analysis and Testing

ule. For a program to fail on a given input, three program testing. It is shown how this model of
necessary and sufficient conditions must be satis- concurrent programs is used to extend the methods
fled: a fault location must be executed, the succeed- and theory of testing sequential programs to con-
ing data state must be infected, and the data-state current programs.
error must propagate to the output. The paper gives This paper gives an overview of Weiss's Ph.D. dis-
an overview of execution, infection, and propaga- ser givestano of Weiss's.
tion analysis and discusses how the results of these sertation on the testing of concurrent programs.
analyses can be used to identify program locations Only those with a significant background in concur-
where faults can easily hide. rency and program testing should read this.

This paper is the best introduction to the fault/
failure model discussed in this module. It should be Weyuker8O
read before some of the more theoretical presen- Weyuker, Elaine J., and Thomas J. Ostrand.
tations in [More11881, [Richardson88], [Zei089], and "Theories of Program Testing and the Application of
[Morell90]. Revealing Subdomains." IEEE Trans. Software Eng.

SE-6, 3 (May 1980), 236-246. Reprinted in
Welser84 [Miller8l1.
Weiser, Mark. "Program Slicing." IEEE Trans. Soft- Abstract: The theory of test data selection pro-
ware Eng. SE-JO, 4 (July 1984), 352-357. posed by Goodenough and Gerhart is examined. In

Abstract: Program slicing is a method for automat- order to extend and refine this theory, the concepts
ically decomposing programs by analyzing their of a revealing test criterion and a revealing sub-
data flow and control flow. Starting from a subset domain are proposed. These notions are then used
of a program's behavior, slicing reduces that pro- to provide a basis for constructing program tests.
gram to a minimal form which still produces that A subset of a program's input domain is revealing if
behavior. The reduced program, called a "slice," the existence of one incorrectly processed input im-
is an independent program guaranteed to represent plies that all of the subset's elements are processed
faithfully the original program within the domain of incorrectly. The intent of this notion is to partition
the specified subset of behavior. the program's domain in such a way that all ele-

Some properties of slices are presented. In partic- ments of an equivalence class are either processed
ular, finding statement-minimal slices is in general correctly or incorrectly. A test set is then formed by
unsolvable, but using data flow analysis is sufficient choosing one element from each class. This process
to find approximate slices. Potential applications represents perfect program testing. For a practical
include automatic slicing tools for debugging and testing strategy, the domain is partitioned into sub-
parallel processing of slices. domains which are revealing for errors considered

likely to occur.
This article underscores the point that the same

analysis technique--data flow in this case---can be Three programs which have previously appeared in

used effectively in many areas of software engineer- the literature are discussed and tested using the no-
ing. Although slicing has not been applied to test- tions developed in the paper.
ing, the linkage between data flow testing and pro- This is the foundational paper for error-based test-
gram slicing is inescapable. [KoreI90] extends the ing. The criticism of [Goodenough75] is crisp, and
static concept of slicing to a dynamic one. the paper's theoretical approach has established it as
This paper provides a detailed discussion of the the- a classic.
ory underlying program slicing. It requires careful This is essential reading for the instructor. The stu-
reading and significant background in data flow dent who wishes to pursue error-based testing must
analysis. This is essential reading for the instructor, read it also.

Welss88 Weyuker82
Weiss, Stewart N. "'A Formal Framework for the Weyuker, Elaine J. "On Testing Non-testable Pro-
Study of Concurrent Program Testing." Proc. Sec- grams." ComputerJ. 25, 4 (Nov. 1982), 465-470.
ond Workshop on Software Testing, Verification,
and Analysis. Washington, D.C.: IEEE Computer Abstract: A frequently invoked assumption in pro-

Society Press, 1988, 106-113. gram testing is that there is an oracle (i.e. the
tester or an external mechanism can accurately

Abstract: Representing a concurrent program as a decide whether or not the output produced by a pro-
set of simulating, sequential programs provides a gram is correct). A program is non-testable if ei-
solution to the reproducible testing problem as well ther an oracle does not exist or the tester must ex-
as a formal foundation for a theory of concurrent pend some extraordinary amount of time to deter-

SEI-CM-9-2.0 45

Unit Analysis and Testing

mine whether or not the output is correct. The practical usefulness of these criteria in testing soft-
reasonableness of the oracle assumption is ex- ware, and serve as a means of predicting the
amined and the conclusion is reached that in many amount of testing needed for a given program.
cases this is not a realistic assumption. The conse- The programs studied were taken from the book
quences of assuming the availability of an oracle Software Tools in Pascal by Brian W. Kernighan
are examined and alternatives investigated, and P. J. Plauger. The study was motivated by the

Oracles may be unavailable for a number of rea- theoretical work in [Weyuker84], which indicated
sons, e.g., the correct output may not be known or that data flow testing can require a number of tests
may be extremely difficult to compute. exponentially related to the number of statements in

the software. The study found that for most of the
This paper is essential reading for the instructor, software Teste dy lineatly my st we

and it provides students with a useful description of software tested, only linearly many tests were

pragmatic difficulties of testing theory and practice. pairs was important, however.

Weyuker84 The paper contains some interesting discussion of

Weyuker, Elaine J. "The Complexity of Data Flow experimental design. The software tested is readily

Criteria for Test Data Selection." Information Pro- available, making this paper a good starting point

cessing Letters 19, 2 (Aug. 1984), 103-109. for comparison experiments.

This paper analyzes the theoretical upper bound on White8O
the number of test cases necessary to cover all the White, Lee J., and Edward I. Cohen. "A Domain
definition-use pairs of a program. Strategy for Computer Program Testing." IEEE

This is expert reading in data flow testing. Trans. Software Eng. SE-6, 3 (May 1980), 247-257.
Reprinted in [Miller8l].

Weyuker86 Abstract: This paper presents a testing strategy
Weyuker, Elaine J. "Axiomatizing Software Test designed to detect errors in the control flow of a
Data Adequacy." IEEE Trans. Software Eng. SE-12, computer program, and the conditions under which

12 (Dec. 1986), 1128-1138. this strategy is reliable are given and characterized.
The control flow statements in a computer program

Abstract: A test data adequacy criterion is a set of partition the input space into a set of mutually ex-
rules used to determine whether or not sufficient clusive domains, each of which corresponds to a
testing has been performed. A general axiomatic particular program path and consists of input data
theory of test data adequacy is developed, and five points which cause that path to be executed. The
previously proposed adequacy criteria are ex- testing strategy generates test points to examine the
amined to see which of the axioms are satisfied. It boundaries of a domain to detect whether a domain
is shown that the axioms are consistent, but that error has occurred, as either one or more of these
only two of the criteria satisfy all of the axioms. boundaries will have shifted or else the correspond-

A set of meta-criteria (called axioms) are estab- ing predicate relational operator has changed. If

lished for evaluating test data adequacy criteria. test points can be chosen within E of each boundary,

Criticism of this article appears, along with a reply under the appropriate assumptions, the strategy is
by Weyuker, in [Zweben89]. shown to be reliable in detecting domain errors of

magnitude greater than E. Moreover, the number of

This article is for researchers in program testing the- test points required to test each domain grows only
ory. linearly with both the dimensionality of the input

space and the number of predicates along the path

Weyuker88 being tested.

Weyuker, Elaine J. "An Empirical Study of the This is the fundamental paper on domain testing, an
Complexity of Data Flow Testing." Proc. Second error-based testing strategy. The paper focuses on
Workshop on Software Testing, Verification, and testing errors in the control flow of programs whose
Analysis. Washington, D.C.: IEEE Computer Soci- predicates have linear interpretation in the input

ety Press, 1988, 188-195. variables. Note that the restrictions specified in the
paper, especially linearity and the absence of arrays,

Abstract: A family of test data adequacy criteria limit the applicability of this strategy mostly to data
employing data flow information has been processing programs. The strategy is examined
previously proposed, and theoretical complexity closely in [Clarke82] and complemented by the ap-
analysis performed. This paper describes an em- proach in [Zeil831.
pirical study to help determine the actual cost of
using these criteria. This should help establish the This paper is very well written and requires little

background, though [Howden76] should probably be

46 SEI-CM-9-2.0

Unit Analysis and Testing

read first. It is essential reading for the instructor, Firm mutation represents the practical implemen-
and students will find it very readable. tation of the extent property of fault-based tech-

niques discussed in [MoreI188]. This paper is indica-

Woodward80 tive of a growing understanding of the importance

Woodward, Martin R., David Hedley, and Michael of analysis of propagation in program testing.

A. Hennell. "Experience with Path Analysis and The paper assumes a good grounding in mutation
Testing of Programs." IEEE Trans. Software Eng. testing and knowledge of practical problems associ-
SE-6, 3 (May 1980), 278-286. Reprinted in ated with it.
[Miller81].

Abstract: There are a number of practical dif- Young88
ficulties in performing a path testing strategy for Young, Michal, and Richard N. Taylor. "Combiningcomputer programs. One problem is in deciding Static Concurrency Analysis with Symbolic Execu-

computerIEprograms. Onetproblemgis1in deciding
which paths, out of a possible infinity, to use as test tion." IEEE Trans. Software Eng. 14, 10 (Oct.
cases. A hierarchy of structural test metrics is sug- 1988), 1499-1511.
gested to direct the choice and to monitor the Abstract: Static concurrency analysis detects
coverage of test paths. Another problem is that anomalous synchronization patterns in concurrent
many of the chosen paths may be infeasible in the programs, but may also report spurious errors in-
sense that no test data can ever execute them. Ex- volving infeasible execution paths. Integrated ap-
perience with the use of "allegations" Ic circum- plication of static concurrency analysis and sym-
vent this problem and prevent the static generation bolic execution sharpens the results of the former
of many infeasible paths is reported. without incurring the full costs of the latter applied

This paper introduces the concept of LCSAJ, a in isolation. Concurrency analysis acts as a path
linear code sequence and jump, which has since selection mechanism for symbolic execution, while
been used as a structural measure in several diverse symbolic execution acts as a pruning mechanism for
experiments. concurrency analysis. Methods for combining the

techniques follow naturally from explicit charac-
The paper should be read by the instructor inter- terization and comparison of the state spaces ex-
ested in practical methods of structural testing. Stu- plored by each, suggesting a general approach for
dents will find the paper difficult but rewarding. integrating state-based program analysis tech-

niques in a software development environment.
Woodward88 Many have proposed augmenting flow analysis with
Woodward, M. R., and K. Halewood. "From Weak symbolic execution to minimize the impact of in-
to Strong, Dead or Alive? An Analysis of Some feasible paths. This paper clearly presents the ad-
Mutation Testing Issues." Proc. Second Workshop vantages and the difficulties of such an integration.
on Software Testing, Verification, and Analysis. Since this paper treats the intersection of three sub-
Washington, D.C.: IEEE Computer Society Press, jects--concurrency, flow analysis, and symbolic
1988, 152-158. execution)-significant background is necessary be-

Abstract: Despite the intrinsic appeal of the muta- fore reading.
tion approach to testing, its disadvantage in being
computationally expensive has hampered its wide- Youngblut89
spread acceptance. When weak mutation was intro- Youngblut, Christine, et al. SDS Software Testing
duced as a less expensive and less stringent form of and Evaluation: A Review of the State-of-the-Art in
mutation testing, the original technique was
renamed strong mutation. This paper argues that Software Testing and Evaluation with Recommended
strong mutation testing and weak mutation testing R&D Tasks. IDA Paper P-2132, Institute for De-
are in fact extreme ends of a spectrum of mutation fense Analyses, Alexandria, Va., Feb. 1989.
approaches. The term firm mutation is introduced This report discusses almost all areas of program
to represent the middle ground in this spectrum. analysis and testing at all levels (unit, integration,
The paper also argues, by means of a number of system, and acceptance) and evaluates them in the
small examples, that there is a potential problem context of SDI applications. (The report was pre-
concerning the criterion for deciding whether a pared for the Strategic Defense Initiative Organiza-
mutant is 'dead' or 'live.' A variety of solutions are tion.) An extensive glossary is included. This is a
suggested. Finally, practical considerations for a companion to [Brykczynski89].
firm mutation testing system, with greater user con-
trol over the nature of result comparison, are dis-
cussed. Such a system is currently under devel-
opment as part of an interpretive development envi-
ronment.

SEI-CM-9-2.0 47

Unit Analysis and Testing

Zei183 goals, the data-flow criteria as a general class are

Zeil, Steven J. "Testing for Perturbations of Program more selective than the control-flow criteria. It is

Statements." IEEE Trans. Software Eng. SE-9, 3 shown, however, that this result does not hold for

(May 1983), 335-346. general testing goals, a limitation that appears to
stem directly from the practice of defining data-flow

Abstract: Many testing methods require the selec- criteria on the computation history contributing to a
tion of a set of paths on which tests are to be con- single result.
ducted. Errors in arithmetic expressions within This paper challenges the reader to consider meth-
program statements can be represented as perturb- ods of comparing path-selection criteria other than
ing functions added to the correct expression. It is osuocmpaiong
then possible to derive the set of errors in a chosen
functional class which cannot possibly be detected The paper assumes the reader is familiar with data
using a given test path. For example, test paths flow testing at the level of [Clarke89].
which pass through an assignment statement "X :=
f (Y)" are incapable of revealing if the expression Zel189
"X - f (Y)" has been added to later statements. In Zeil, Steven J. "Perturbation Techniques for Detect-
general, there are an infinite number of such un-
detectable error perturbations for any test path. ing Domain Errors." IEEE Trans. Software Eng. 15.

However, when the chosen functional class of error 6 (June 1989), 737-746.
expressions is a vector space, a finite characteriza- Abstract: Perturbation testing is an approach to
tion of all undetectable expressions can be found for software testing which focuses on faults within
one test path, or for combined testing along several arithmetic expressions appearing throughout a pro-
paths. An analysis of the undetectable pertur- gram. In this paper perturbation testing is ex-
bations for sequential programs operating on in- panded to permit analysis of individual test points
tegers and real numbers is presented which permits rather than entire paths, and to concentrate on
the detection of multinomial error terms. The re- domain errors. Faults are modeled as perturbing
duction of the space of (potential) undetected errors functions drawn from a vector space of potential
is proposed as a criterion for test path selection. faults and added to the correct form of an arith-

This paper describes a method for deducing suf- metic expression. Sensitivity measures are derived
ficient path coverage to ensure the absence of which limit the possible size of those faults that
prescribed errors in a program. It models the pro- would go undetected after the execution of a given

gram computation and potential errors as a vector test set. These measures open up an interesting new

space. This enables the conditions for non- view of testing, in which attempts are 7,;ade to

detection of an error to be calculated. The strategy reduce the volume of possible faults which, were

assumes the existence of a reliable testing strategy they present in the program being tested, would

for paths, which, of course, does not exist. have escaped detection on all tests performed so
far. The combination of these measures with stan-

Exposure to [White80] should provide sufficient dard optimization techniques yields a new test data
background for appreciating the context in which generation method, called arithmetic fault detec-
the techniques are to be used. To understand the tion.
mathematics requires some background in linear al-
gebra, especially if some of the references are to be This paper extends Zeil's earlier paper [Zei183] by
read. The paper explores an interesting area and treating aspects of propagation not considered be-

deserves to be read by the instructor. This is ad- fore. Program computations are modeled as vector

vanced reading for students, however, spaces, and program faults as perturbations of those
vector spaces. The perturbation model is somewhat
analogous to the symbolic execution model dis-

Zei188 "cussed in [Morell9o].
Zeil, Steven J. "Selectivity of Data-Riow and
Control-Flow Path Criteria." Proc. Second Work- The paper requires significant mathematical sophis-
shop on Software Testing, Verification, and Analy- tication to understand the model proposed. It is
sis. Washington, D.C.: IEEE Computer Society expert reading in error-based testing.
Press, 1988, 216-222. Zweben89

Abstract: A given path selection criterion is more Zweben, Stuart H., and John S. Gourlay. "On the
selective than another such criterion with respect to Adequacy of Weyuker's Test Data Adequacy Axi-
some testing goal if it never requires more, and oms." IEEE Trans. Software Eng. 15, 4 (April
sometimes requires fewer, test paths to achieve that 1989), 496-501
goal. This paper presents canonical forms of
control-flow and data-flow path selection criteria Abstract: Weyuker has recently proposed a set of
and demonstrates that, for some simple testing

48 SEI-CM-9-2.0

Unit Analysis and Testing

properties which should be satisfied by any reason-
able criterion used to claim that a computer pro-
gram has been adequately tested. She called these
properties "axioms." She also evaluated several
well-known testing strategies with respect to these
properties, and concluded that some of the com-
monly used strategies failed to satisfy several of the
properties.

We question both the fundamental nature of the
properties and the precision with which they are
presented, and illustrate how a number of ideas in
Weyuker's paper can be simplified and clarified
through greater precision and a more consistent set
of definitions. We also reanalyze the testing strat-
egies after accounting for these inconsistencies.
The strategies tend to fare much better as a result of
this reanalysis.

The authors raise the issue of what makes an
axiomatic system, as well as what constitutes a
proper axiom. This criticism must be read with
along with [Woyuker86]. Weyuker responds to the
criticism at the end of the article.

If students have never seen such a professional in-
terchange, this is worth reading for that aspect
alone.

SEI-CM-9-2.0 49

UNIJMITED. UNCLASSIFIED
sECUIWY CLAASSFA"MON OF MWS PAGE

REPORT DOCUMENTATION PAGE
Ila. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DEC..ASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATON REPORT NUMBER(S)

SEI-CM-9-2.0

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Haiscom Air Force Base, MA 01731

S&. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1 962890C0003

SEI Joint Program Office ESD/AVS

Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.Carnegie Mellon University PROGRAM PROJECT TASK WORK UNITPittsburgh PA 15213 ELEMENT NO NO. NO NO.
63756E N/A N/A N/A

11. TITLE (Include Security Claaification)

Unit Analysis and Testing
12. PERSONAL AUTHOR(S)

Larry J. Morell, Hampton University and Lionel E. Deimel, SEI
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPOKIr (Yr., Mo.. Day) 15. PAGE COUNT

Final FROM TO June 1992 50 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 15. SUBJECT TERMS (Coninue on reverse of necessary and idenify by block number)

FIELD GROUP SUB. GIL module testing unit testing

'software testing
test method

19. ABSTRACT (Continue on zemvae if necmaary and identify by block number)

This module examines the techniques, assessment, and management of unit analysis and testing. Analysis
strategies are classified according to the view they take of the software: textual, syntactic, control flow, data
flow, computation flow, or functional. Testing strategies are categorized according to whether their coverage
goal is specification-oriented, implementation-oriented, error-oriented, or a combination of these. Mastery of
the material in this module allows the software engineer to define, conduct, and evaluate unit analyses and
tests and to assess new techniques proposed in the literature.

(pleae turn ovr)

20. DISTRIBUTfON/AVAILABILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNUMITED SAME AS RPTDTIC USERS* Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER ftncIuo. \r. Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7631 ESD/AVS (SEI)

DD FORM 1473.83 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SscuRrr'Y aASwICArIa4 04' THiS

smltar -ccndnued frarn page one. block 19

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Graduate Curriculum Project is developing a wide range of materials to support software engineering education.
A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be used by an
instructor in designing a course. A support materials package (SM) contains materials related to a module that may be
helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily related to a
curriculum module. Other publications include software engineering curriculum recommendations and course designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to SEI Products,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Electronic mail can be sent
to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19] EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management* Engineering Education
CM-5 Information Protection EM-3 Reading Computer Programs: Instructor's Guide and

Exercises
CM-6 Software Safety EM-4 A Software Engineering Project Course with a Real
CM-7 Assurance of Software Quality Client
CM-8 Formal Specification of Software* EM-5 Scenes of Software Inspections: Video Dramatizations
CM-9 Unit Analysis and Testing for the Classroom
CM-10 Models of Software Evolution: Life Cycle and Process EM-6 Materials to Support Teaching a Project-Intensive
CM-11 Software Specifications: A Framework Introduction to Software Engineering
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 [no longer available]
CM-16 Software Development Using VDM
CM-17 User Interface Development*
CM-18 [superseded by CM-23]
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming*
CM-26 Understanding Program Dependencies

